首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于2015~2019年广州4个不同国控站点类型的大气污染物监测数据,研究了广州各站点类型颗粒物(PM2.5)和臭氧(O3)的污染特征,并分析了O3污染季节和PM2.5污染季节PM2.5和O3的相关性及相互作用.结果表明:2015~2019年广州各站点类型PM2.5浓度总体呈下降趋势,O3浓度呈上升趋势.不同污染季节PM2.5与O3浓度均呈正相关.O3污染季节二次PM2.5的生成对颗粒物的影响显著大于一次PM2.5,随着光化学水平的升高,一次PM2.5的贡献浓度基本不变(均在21.03~31.37μg/m3范围内),贡献率逐渐下降;而二次PM2.5的贡献浓度逐渐升高(3.51~7.72 μg/m3升高到16.04~18.45μg/m3),贡献率也逐渐升高(11%~27%升高到34%~44%),且呈倍数增加.不同站点类型贡献差异明显,背景站点二次PM2.5的贡献最大,城区站点在中和高光化学水平下二次PM2.5的贡献最小;PM2.5污染季节各站点类型在不同PM2.5污染水平下O3浓度均具有差异性,总体上均呈现背景站点>郊区站点>城区站点的特点.气溶胶的消光作用和非均相反应均显著促进O3生成,随着PM2.5浓度升高,各站点类型的O3浓度峰值逐渐升高,由62.12~83.82μg/m3升高到92.49~135.4μg/m3;O3变化率峰值也逐渐升高,由8.42~10.02μg/(m3·h)升高到21.33~27.04μg/(m3·h).进一步促进了广州PM2.5和O3浓度的协同增长.  相似文献   

2.
为了解化工园区大气污染情况,使用自主研制的微型大气检测仪结合无人机研究化工园区臭氧(O3)垂直廓线,在2020年8月~2021年1月于杭州湾上虞经济技术开发区开展了12d无人机外场观测实验.各观测日从08:00~18:00每隔1h进行一次飞行观测,每次观测分别获得了离地面0,50,100,200,300,400,500m的O3、总挥发性有机物(TVOCs)和二氧化氮(NO2)浓度.结果表明:受气象因素、地面工厂排放以及早晚出行高峰的影响,TVOCs和NO2浓度整体随高度增加而下降,其中NO2浓度随高度上升而下降的幅度较明显,在0m处浓度为19.7~59.1μg/m3,500m处为5.9~21.7μg/m3,下降率为40~70%,TVOCs和NO2浓度都呈现出早晚高、正午低的日变化趋势,此外可能受逆温层的影响导致个别天数NO2浓度在400~500m不降反升;O3受前体物光化学反应、太阳辐射强度及平流层输送的影响,其浓度随高度增加而下降,平均浓度在0m处为49.2μg/m3,500m处为98.4μg/m3,O3日变化浓度在15:00~17:00达到峰值.TVOCs和O3、NO2和O3在各高度浓度均呈负相关,受不同季节气象因素差异和冬季取暖排放增加的影响,O3浓度季节变化为夏>秋>冬,TVOCs和NO2浓度为冬季>秋季>夏季.后向轨迹聚类分析表明化工园区本地O3浓度会受区域输送影响升高,在冬季时由于气温低不利于前体物生成O3,本地O3浓度受区域输送影响较夏季小.  相似文献   

3.
为研究南京夏季大气复合污染的特征,2016年8月15日~9月15日期间开展了强化观测实验,本文利用仙林、鼓楼80m楼顶2个站点的强化观测资料,结合草场门常规监测资料,统计分析了南京不同地区夏季O3和颗粒物(PM2.5、PM10)的浓度特征和相关性,以及郊区水溶性离子与其气态前体物的转化率变化特征.研究表明:3个站点O3平均小时浓度为100.3μg/m3.PM2.5和PM10浓度分别为41.1和67.8μg/m3,郊区夜间存在颗粒物浓度高值.SO42-、NO3-、NH4+浓度总和占PM2.5浓度的比值达到61%,OC(有机碳)/EC(元素碳)比值范围为0.8~4.0,日均值超过2.0的天数占77%,城、郊均存在二次污染.白天O3与颗粒物(PM2.5)浓度呈显著正相关变化,硫转化率(SOR)、氮转化率(NOR)分别与O3浓度、湿度显著正相关.HONO主要在夜间积累,HCl和HNO3浓度峰值出现在下午.与其它无机盐相比,NH4+在总氨中所占比例明显偏低,大气中的氨主要以气态NH3存在.观测期间O3污染较重,O3与颗粒物的正相关关系显著,化学反应在颗粒物积累过程中具有重要贡献,此外还可能存在城区向郊区的污染输送.  相似文献   

4.
张峰  王晗  薛惠锋 《中国环境科学》2021,40(11):5079-5085
利用成都市2016~2018年O3逐时监测数据以及该时段同时次的地面气象观测资料,通过对O3日变化特征的分析,确定了表征研究区O3逐日污染潜势的四个关键时段,即全天时段(00:00~24:00)、日间时段(05:00~20:00)、O3超标时段(11:00~19:00)以及O3峰值时段(15:00~16:00).基于广义可加模型(Generalized Additive Model,GAM)分别构建了O3日最大8h滑动平均浓度(O3-8h)与上述四个时段气象要素之间的函数关系,分析了时间尺度变化对O3逐日污染潜势的影响.结果表明:GAM模型可以很好地表征O3-8h与不同时段多气象要素之间的非线性关系.O3超标时段气象要素对O3逐日污染潜势具有最佳的指示意义,对应GAM模型的调整判定系数R2和方差解释率IRV分别为0.81和81.4%,模型模拟值与观测值的压轴回归决定系数R2为0.805.太阳辐射、相对湿度和气温是决定O3逐日污染潜势最重要的气象要素,但三者在GAM模型中的重要性排序会因时间尺度的变化而有所差异.  相似文献   

5.
基于2018年上海市3种类型的交通环境空气监测站(路边站,港口站和机场站)的在线监测数据,探讨了3种交通站污染物的浓度水平和昼夜分布特征,比较分析了同期上海市环境空气污染物浓度,并揭示了工作日和非工作日对交通环境空气的影响.结果显示,上海市交通环境空气,尤其是港口环境空气中NOx,NO2和NO年小时平均浓度显著高于上海市年小时平均浓度;其中NO高出上海市年小时平均浓度比例最高,港口,路边和机场环境空气NO浓度分别为68,36和17μg/m3,分别高出上海市年小时平均浓度871%,414%和143%;交通环境空气中的O3平均浓度范围为42~65μg/m3,均低于上海市平均浓度.NOx,NO2,NO,PM10,PM2.5,CO和BC(黑炭)昼夜浓度主要呈现双峰分布特征,且峰值出现时间与交通活动高峰时间较为吻合;O3的峰值大多出现在13:00,且机场环境空气浓度中O3浓度最高,峰值浓度为108μg/m3.非参数检验结果显示,上海市路边环境空气中SO2,NOx,NO2,NO,PM10,PM2.5,O3,CO和BC在周一~周日无明显差异(P>0.05).  相似文献   

6.
利用2015~2019年环境监测数据,对比分析华北地区平原城市保定市和山区城市张家口市PM2.5和O3变化和相关关系.结果表明:保定市PM2.5夏低冬高,O3夏高冬低,日变化为午后单峰型,而张家口市PM2.5浓度低,日变化幅度较弱,冬季O3日变化为午后峰值和凌晨5:00左右弱峰值双峰型.张家口市冬季全天及春夏秋季夜间O3浓度显著高于保定市,甚至夏季出现夜间O3超标异常,最高浓度达到202μg/m3,反映了平原城市和清洁山区大气物理化学过程变化的影响.PM2.5和O3在4~9月为正相关,11~3月为负相关;保定市PM2.5-O3相关系数日变化呈单峰型,张家口市为双峰型变化,凌晨和午后各有一峰值,华北地区平原污染区和高山相对清洁区,大气复合污染物PM2.5和O3作用关系的日变化及季节特征具有明显差异.  相似文献   

7.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

8.
利用相似集合预报技术(AnEn),采用2a的睿图-化学子系统(RMAPS-CHEM)历史预报结果和观测资料,对2018年6月1日~9月30日模式在京津冀地区13个城市共70个国控站点逐小时预报的O3浓度进行了释用订正研究,结果表明:随着集合成员数的增加,AnEn方法的预报效果呈现出先上升后下降的趋势,并且越过临界集合成员数后,预报效果逐渐降低,因此确定14为最优集合成员数.不同预报因子的权重敏感性不同,其中以RMAPS-CHEM本身预报的O3权重最高,其它依次为2m温度、2m相对湿度、10m风速和边界层高度.经过AnEn方法的释用订正,有效降低了O3浓度的预报误差.AnEn方法对O3浓度的时空变化趋势以及浓度值大小都有很好的订正效果,从所有站点的检验结果来看,AnEn方法订正后的O3浓度与观测值之间的相关系数较模式结果提升68.6%,均方根误差降低25%.AnEn方法对O3预报释用订正的效果存在明显的区域特征和日变化特征,白天时段对预报的提升主要集中在京津冀东部地区和大城市地区,夜间主要是在城市地区更加显著;AnEn方法夜间的订正效果优于白天,部分站点夜间提升效果(相关系数)超过250%.AnEn方法订正后的O3概率密度函数整体更接近实况,特别是在O3的低值区(35μg/m3以下)和高值区(200μg/m3以上)订正效果更佳.针对典型O3污染过程中北京、天津、石家庄3个城市的对比检验表明,AnEn方法在0~48h的预报时效内表现优于48~96h.不同城市体现出一定的区域差异,天津最优,北京和石家庄次之.AnEn方法对RMAPS-CHEM预报的O3浓度订正效果整体改善明显,可以在区域光化学污染数值预报工作中进行更加广泛的应用.  相似文献   

9.
针对2017年1月上旬广州地区出现的一次持续时间长的重污染天气过程,基于地面观测资料、激光雷达、风廓线雷达和微波辐射计数据,从水平和垂直扩散条件2个方面分析了此次污染过程的形成和维持的原因.结果表明:(1)本次污染过程期间,广州地区地面风速基本为小于2m/s的偏北风,在300m高度以下普遍存在平均水平风速低于2.6m/s的小风层;污染前期640m高度内的各层回流指数廓线小于0.6,100m高度小于0.4,污染缓解后回流指数高于0.7.(2)地面PM2.5浓度与逆温强度的相关系数为0.42,过程平均逆温厚度167m,平均逆温强度为1.08℃/100m;(3)PM2.5浓度与边界层高度的相关系数为-0.56,清洁时段的平均边界层高度(876m)约为污染时段(620m)的1.4倍,过程最低边界层高度为267m;PM2.5浓度与边界层通风量的相关系数为-0.61,清洁时段的平均边界层通风量(2538m2/s)约为污染时段(1136m2/s)的2.2倍,使用边界层通风量能更好表征大气污染的程度.  相似文献   

10.
为研究2020年初新冠疫情严控措施对南京市空气质量的影响,选取1月25日~2月10日(疫情严控期)南京及周边省会城市空气质量监测数据,与5a同期数据进行对比,分析时空分布特征.结果表明,疫情停工期间,降水量同比下降,大气扩散条件为近5a较差水平,但除O3浓度不降反升外,其他主要污染物PM2.5、PM10、SO2、NO2和CO浓度均达近5a最低值,分别为36,44,5,22μg/m3和1.1mg/m3.通过推算疫情停工期间本地减排措施的“净环境效益”,严控使得PM2.5、PM10、SO2、NO2和CO分别下降了41.7%、45.3%、14.3%、43.5%、18.2%,O3浓度上升了4.8%.从空间上分析,南京市SO2浓度及其同比降幅在长三角省会城市内排名第1,其他污染物改善情况处于中等水平.从日变化可知,PM2.5和PM10日变化由双峰型变为单峰型,夜间未出现次峰值.O3夜间浓度明显升高,原因是交通源的大幅削减使NO对O3的滴定反应降低,而白天O3浓度峰值取决于VOCs和NOx的减排比例.  相似文献   

11.
利用2015~2018年哈尔滨市臭氧(O3)监测数据,与其他典型城市进行对比,详细分析了哈尔滨市O3的时间和空间分布特征,及其与气象要素的关系。结果表明:哈尔滨市2015~2018年O3污染程度比北上广及长春,沈阳,大连等城市轻;哈尔滨市O3污染具有明显的季节特征,春夏季O3超标率大于秋冬季;月变化趋势呈现倒“U”型,O3高值集中在5~7月;日变化为单峰分布,在13:00~15:00时浓度维持在全天高值; O3浓度表现为“周末效应”,工作日O3浓度略高于周末;空间分布特征表明:哈尔滨市外围郊区O3浓度普遍高于内围市区;在O3污染高发的5~7月,太阳辐射强度在800~1200W/m2、气温越高、风速越大和相对湿度越小,O3超标率越高。  相似文献   

12.
2022年9月18-20日福州市发生了一次臭氧(O3)污染事件,11:00-14:00 O3浓度基本维持在160μg/m3以上,且19日O3日最大8小时平均浓度达176μg/m3.这次污染事件可能与第14号台风“南玛都”的外围东北气流带来的海上O3污染传输有关.本文利用2022年9月15-21日常规大气污染物浓度、VOCs组分浓度及气象监测数据,结合拉格朗日粒子扩散模型(LPDM模型)、区域空气质量模型(WRF-CMAQ模型)和基于观测的化学盒子模型(OBM模型)等多种手段对此次污染过程进行了分析,定量评估了海上O3传输贡献和福州市O3前体物减排效果.结果表明:(1)基于△Ox(光化学氧化剂小时浓度变化量)的结果显示,19日受东北风影响,近海高浓度O3气团传输至福州内陆,传输贡献为5~17μg/m3,19日18:00-23:00海上O3<...  相似文献   

13.
选择江苏省南京市南京信息工程大学永丰农业气象试验站水稻种植区站点,实时观测气象因子、O3浓度、干沉积通量、沉积速率.基于课题组在本地修正过的水稻气孔导度模型量化O3干沉积通量在气孔与非气孔通道的分配特征.结果表明:整个水稻观测期间,O3干沉积速率与通量在夜间变化平缓,白天变化剧烈,均值分别为0.34cm/s与-0.0049μmol/(m2·s),峰值则分别出现在08:30与12:30.此外,水稻生长季期间平均日累积O3总通量、气孔通量与非气孔通量分别为0.40,0.14,0.26mmol/(m2·d),其累积值分别为27.8,9.8,18.0mmol/m2.平均O3气孔通量和非气孔通量所占总O3通量的比例分别为34.0%和66.0%,其中白天的比例分别为49.0%与51.0%.  相似文献   

14.
2018年12月15~18日使用激光雷达在河北望都观测气溶胶与O3,利用气溶胶消光系数廓线判断边界层的变化,进而研究大气边界层对于近地表层(300m)O3浓度的影响.结果表明,边界层主要影响O3的干沉降以及高空O3的垂直输送,在受本地污染控制时,近地表O3浓度受干沉降控制明显,随着边界层高度的下降而减少;西北地区气团占主导时,O3浓度主要受水平传输以及高空垂直输送影响.  相似文献   

15.
针对2013~2019年上海地区气温相对偏低(25℃及以下)的一类O3污染事件,从时间分布特征、天气系统类型、气象成因等方面进行了深入分析.结果表明:上海近7a偏低气温下的O3污染按小时标准和日标准分别出现45h和19d,占各自O3污染总次数的5.0%和7.3%,在春季则上升至20.6%和20.0%,是上海春季主要O3污染现象之一.当气压介于1010.1~1017.1hPa、风速介于2.1~3.2m/s、湿度介于40.0%~54.0%、辐射介于0.5~2.7MJ/m2,较易出现偏低气温下的O3污染;与高温下的O3污染相比,出现偏低气温下的O3污染时,气压、PM2.5和NO2浓度分别偏高了10.0hPa、26.0μg/m3和24.9μg/m3,辐射偏低了0.5MJ/m2.造成偏低气温下的O3污染天气类型可以分为弱高压前部、弱高压控制和海上高压后部3种.3个典型污染个例分析显示,上游输送、本地静稳辐合和垂直逆温条件分别是这3种类型的主要气象成因.  相似文献   

16.
基于OMI/Aura卫星资料,分析了北京地区2007~2016年近10a对流层O3浓度(0~3km)、硫酸盐气溶胶光学厚度(0~2km)、SO2(边界层以内)柱浓度时空演变特征.结果表明,近10a来北京地区O3浓度总体呈现上升趋势,最低值在2007年,浓度为33.65 μg/m3;硫酸盐气溶胶污染总体变化呈现先下降后增长的趋势,2007年硫酸盐气溶胶污染最为严重,2011年污染最轻,对应的AOD值为0.252,但在2014年以后,硫酸盐气溶胶污染又出现增长趋势;SO2浓度在2007~2016年总体呈现下降的变化趋势,且下降趋势明显,最高值为2007年,最低值出现在2016年,最低值比最高值降低了60.42%,但在2011年污染出现反弹.北京O3季节变化明显,夏季高、春秋次之、冬季低;硫酸盐气溶胶污染季节特征与O3相同;SO2污染主要集中在冬季,采暖期污染程度高于非采暖期.  相似文献   

17.
基于2014~2017年江苏省13个市的PM2.5浓度和O3_8h_max数据,探讨了其时空分布特征.在此基础上,研究了日益升高的近地层O3浓度与气象因子的关系.结果表明:江苏省2014~2017年PM2.5浓度整体上呈下降的趋势,年均浓度减少率为6.06μg/m3,而O3_8h_max整体上呈上升趋势,年均浓度增长率为3.84μg/m3.总体上,PM2.5浓度呈现冬春高、夏秋低的V型月变化特征,O3_8h_max则基本呈现不规则的M型,在5月份达到峰值后逐渐降低,又在7~9月份保持平缓,而后又逐渐下降.空间上,江苏省PM2.5浓度呈现"内陆高,沿海低"的状态,而O3_8h_max却呈现"沿海高,内陆低"的状态.与气象因子的相关性表明,O3浓度与气温和太阳辐射呈正相关关系,与相对湿度呈负相关关系,太阳辐射对O3浓度的影响最大,其次是温度和相对湿度.当日平均气温在20~30℃、相对湿度在50%~70%、太阳辐射强度高于150w/m2时O3浓度容易出现超标.  相似文献   

18.
基于OMI/Aura卫星资料,分析了北京地区2007~2016年近10a对流层O3浓度(0~3km)、硫酸盐气溶胶光学厚度(0~2km)、SO2(边界层以内)柱浓度时空演变特征.结果表明,近10a来北京地区O3浓度总体呈现上升趋势,最低值在2007年,浓度为33.65 μg/m3;硫酸盐气溶胶污染总体变化呈现先下降后增长的趋势,2007年硫酸盐气溶胶污染最为严重,2011年污染最轻,对应的AOD值为0.252,但在2014年以后,硫酸盐气溶胶污染又出现增长趋势;SO2浓度在2007~2016年总体呈现下降的变化趋势,且下降趋势明显,最高值为2007年,最低值出现在2016年,最低值比最高值降低了60.42%,但在2011年污染出现反弹.北京O3季节变化明显,夏季高、春秋次之、冬季低;硫酸盐气溶胶污染季节特征与O3相同;SO2污染主要集中在冬季,采暖期污染程度高于非采暖期.  相似文献   

19.
基于2014~2017年京津冀13座城市的O3-8h数据,分析O3时间变化特征及污染状况.在此基础上,结合同期气象数据研究近地层O3浓度与气象要素的关系.结果表明:2014~2017年京津冀区域O3-8h整体呈上升趋势,增长率为4.50μg/m3.区域内O3污染整体加重,北京、保定O3污染较为严重;2014~2015年O3浓度与超标情况的月变化主要呈单峰型变化,峰值出现在5月;而2016~2017年为不规则双峰型变化,峰值出现在5~6月和9月.与气象因子的相关性表明:气象要素对O3的影响具有明显的季节差异,其中春、夏、秋季气温是影响O3浓度变化的主要因素,而在冬季相对湿度与风速为影响O3浓度变化的主要因素.此外,分析表明北京、天津、石家庄3大城市夏季形成高浓度O3的阈值明显不同.  相似文献   

20.
利用近5a深圳西部城区(大学城)大气臭氧(O3)在线监测数据,结合深圳大学城超级站大气复合污染综合观测,获取了大气O3演变趋势,并探究O3超标日气象条件及其前体物的组成变化以期掌握大气O3超标成因.结果表明,深圳大学城大气O3日最大8h平均体积分数上升速度达1.1×10-9/a,超标率达到6%以上.高温低湿的气象条件更容易促进大气O3生成,高温时光化学反应强烈有利于O3的本地生成,而低湿可能不利于O3的湿去除从而导致污染积累.挥发性有机物(VOCs)不同组分在O3超标日上升幅度(70%~95%)明显高于NOx(28%),且O3高值浓度分布在高VOCs低NOx区域,说明深圳大学城大气O3生成主要受VOCs控制.O3超标日的甲苯与苯比值(T/B)在夜间超过10表明可能存在大量工业排放;而含氧挥发性有机物(OVOCs)在午间(12:00~14:00)的消耗相较于非超标日高出了1倍左右,表明工业活动排放的OVOCs对白天O3生成可能贡献显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号