首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 115 毫秒
1.
VOCs是O3和SOA形成的重要前体物,可增强大气氧化性,促进二次污染物形成,影响区域空气质量和人体健康.为研究铜川市秋冬季VOCs特征及其对O3和SOA生成的潜力,利用TH-300B在线监测系统监测了铜川市区102种VOCs的体积分数,并结合最大增量反应活性系数法和气溶胶生成系数法分别计算VOCs的O3及SOA生成潜力.结果表明,铜川市秋季和冬季φ(TVOC)分别为(50.52±16.81)×10-9和(63.21±35.24)×10-9,O3生成潜势分别为138.43×10-9和137.123×10-9, SOA生成潜势分别为3.098μg·m-3和0.612μg·m-3.秋季VOCs中含量最多的2种组分为烷烃(26.19%)和芳香烃(26.04%),冬季VOCs中含量最多的组分为烷烃(48.88%).反-2-戊烯、甲苯和间/对-二甲苯是秋季OFPs最大的3个成分,...  相似文献   

2.
为了探究珠江三角洲城市大气PM2.5和O3的协同污染特征,在深圳市大学城开展了秋季光化学反应活跃季大气污染加强观测.发现O3日最大8h平均值(O3_8h)和PM2.5在日间具有较强的正相关关系,且O3_8h与典型挥发性有机物(VOCs)甲醛的相关性显著高于NO2.利用气溶胶质谱仪在线测量了亚微米气溶胶化学组成,并利用正交矩阵因子模型(PMF)对其中有机气溶胶进行来源解析,解析出5类因子,其中二次有机气溶胶(SOA)占总有机物浓度的50%.通过对污染物之间的相关性分析发现,O3_8h和SOA具有良好的相关性,但与硝酸盐(NO3-)未表现出相关性,说明VOCs在深圳城区大气PM2.5和O3耦合生成过程中的作用比NOx明显,VOCs减排是深圳市协同控制PM2.5和O3污染的关键.  相似文献   

3.
2017年10月、12月在宝鸡市城区开展了共29d的挥发性有机物(VOCs)浓度在线监测,共测出102种VOCs,分别采用最大增量反应活性(MIR)系数法和气溶胶生成系数(FAC)法估算了宝鸡市各VOCs组分的臭氧生成潜势(OFPs)和二次有机气溶胶生成潜势(SOAFPs),筛选出生成O3与SOA活性最大的VOCs成分.结果表明:宝鸡市秋季和冬季TVOC的浓度分别为(68.62±21.85)×10-9和(42.44±16.62)×10-9,总OFPs分别为185.49×10-9和126.00×10-9,总SOAFPs分别为3.26,0.65μg/m3.秋季VOCs中含量最多的2种组分为烷烃(21.83×10-9)和芳香烃(13.37×10-9),分别占TVOC的31.82%和19.49%,乙烯、反-2-戊烯和甲苯是OFPs最大的3个成分,甲苯、间/对二甲苯和乙苯是SOAFPs最大的3个成分.而在冬季,烷烃(17.34×10-9)和炔烃(8.81×10-9)是VOCs中含量最多的2种组分,分别占TVOC的40.85%和20.75%,乙烯、丙烯、乙炔是OFPs最大的3个成分,甲苯、间/对二甲苯、乙苯是SOAFPs最大的3个成分.优先减少烯烃和芳香烃的排放是宝鸡市秋冬季抑制O3和SOA的形成的有效途径.  相似文献   

4.
为科学精准地服务西安市春季大气污染防治工作,2019年3-5月在西安市大气环境超级站开展VOCs在线连续观测,共观测出108种VOCs组分,采用最大增量反应活性法和气溶胶生成系数法估算VOCs对臭氧和SOA的生成潜势。结果表明:西安市春季TVOC平均浓度为155.53μg/m3,其中OVOCs、烷烃和芳香烃贡献较高,占TVOC的79.35%。西安市TVOC日变化在夜间出现2个峰值,与路边站总碳氢变化趋势一致,结合甲苯/苯、异戊烷/戊烷比值分析,VOCs受机动车和工业源排放影响较大。芳香烃、OVOC和烯烃在二次转化中贡献较高,丙烯醛、丙酮和乙醇是西安市臭氧生成的特征组分;间/对-二甲苯、甲苯、邻二甲苯、乙苯对臭氧和SOA生成均影响较大;削减苯系物、OVOC和烯烃排放量是西安市春季抑制O3和SOA生成的有效手段。  相似文献   

5.
采用固相吸附-热脱附-气质联用技术对浙江某市典型彩钢企业生产车间与废气处理装置进行了VOCs定量分析,获得了该行业的特征VOCs成分谱,并利用最大反应增量法(MIR)和气溶胶转化系数法(FAC)估算了彩钢行业各组分VOCs对臭氧(O3)及二次有机气溶胶(SOA)的生成潜势.结果显示:该市彩钢行业VOCs成分复杂,酯类和醇类占比在50%以上;车间VOCs浓度水平受温度影响大,夏季浓度约为冬季浓度的1.6~4.2倍;通过对O3和SOA的计算可知,芳烃类、醇类物质对O3生成潜势贡献率分别为70.0%和28.05%,而SOA生成潜势完全由芳烃类物质提供.  相似文献   

6.
广州番禺大气成分站复合污染过程VOCs对O3与SOA的生成潜势   总被引:1,自引:2,他引:1  
邹宇  邓雪娇  李菲  殷长秦 《环境科学》2017,38(6):2246-2255
通过对广州番禺大气成分站(GPACS)的历史观测数据进行分析,结果表明在P1(2011-09-02~2011-09-05)和P2(2012-06-12~2012-06-15)期间发生典型灰霾过程并伴有高臭氧(O_3)值事件的发生.在P1和P2复合污染过程中,日能见度变化范围分别为5.78~6.91 km和5.60~9.25 km,最大8 h O_3体积分数分别为92.14×10~(-9)和91.29×10~(-9).在检测到的55种挥发性有机物(VOCs)中,烯烃和芳香烃的活性最高,对等效丙烯浓度和最大O_3体积分数的贡献分别为41%、39%,28%、54%(P1过程)和35%、46%,22%、61%(P2过程).利用气溶胶生成系数(FAC)估算污染过程的二次有机气溶胶(SOA)的生成潜势,发现烷烃、烯烃、芳香烃对SOA的生成潜势分别占13.2%、21.4%、65.4%(P1过程)和4.6%、13.8%、81.6%(P2过程).甲苯、异戊二烯、乙苯、间/对二甲苯是对O_3与SOA生成贡献大的物种.污染物从城区的输送、持续静小风、高温低湿以及强烈辐射共同导致这两次灰霾过程中高臭氧浓度事件的形成.  相似文献   

7.
周胜  黄报远  陈慧英  林少雄 《环境工程》2020,38(1):42-47,92
系统分析了珠三角城市群PM2.5、O3和挥发性有机物(VOCs)的污染特征,并筛选出对二次有机气溶胶(SOA)和O3影响较大的敏感性组分。结果显示:珠三角城市群PM2.5和O3浓度的季节变化具有明显差异,PM2.5和O3分别在1月和10月出现浓度最高值。珠三角城市群VOCs主要以烷烃为主,占比为64.2%,其次为芳香烃和烯烃,含量较高的组分为丁烷、异戊烷、异丁烷和环己烷。SOA生成潜势贡献主要以芳香烃为主,占比为78.5%,其中甲苯、间,对-二甲苯和乙苯的SOA生成潜势最大。O3生成潜势主要以烯烃为主,占比为42.3%,其次为芳香烃(34.2%)和烷烃(23.5%),其中丙烯、异戊二烯和1-丁烯的O3生成潜势最大。为有效缓解珠三角城市群PM2.5和O3污染,建议优先对机动车尾气、溶剂挥发、涂料使用和石化行业的VOCs敏感组分进行控制。  相似文献   

8.
以PM2.5和O3浓度超标为表征的区域性大气复合污染已成为当前我国大气污染的主要问题,严重影响到经济的发展和社会的和谐,探究PM2.5与O3的协同控制近年来成为大气污染防控的热点.本文基于WRF-Chem模式,结合气象、大气污染物观测数据及MEIC排放清单等数据,依据不同比例的NOx和VOCs减排量,设计了36组减排情景,模拟了长三角地区PM2.5和O3复合污染时段的空气质量状况.同时,利用综合经验动力学(CEKMA)方法,综合考虑NOx和VOCs减排的边际效益成本和环境健康效益,评估了长三角地区NOx及VOCs减排对PM2.5和O3大气污染控制的影响.最后,定性并定量地研究两者的协同关系及协同减排效果,给出了该区域在复合污染情景下的先侧重VOCs、后侧重NOx减排的协同优化路径,采取先减少NOx排放约7...  相似文献   

9.
为研究西安市人为源VOCs(挥发性有机物)对OFP(O3生成潜势)和SOAFP(二次有机气溶胶生成潜势)的影响,基于西安市环境统计数据和相关统计资料,结合排放因子法和已有的源成分谱,建立西安市人为源VOCs排放清单,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算各类人为源排放VOCs对O3和SOA(二次有机气溶胶)的生成贡献.结果表明:①2016年西安市人为源VOCs排放总量为119.187×103 t,其中,溶剂使用源、移动源和工艺过程源是主要的排放源,排放量分别为50.676×103、29.414×103、24.430×103 t. ②2016年西安市各区县VOCs排放总量较大的依次为长安区、雁塔区、未央区和碑林区,排放量分别为15.28×103、12.34×103、11.81×103和10.14×103 t,莲湖区、新城区和灞桥区VOCs排放量大于5×103 t,而阎良区排放量最小. ③2016年西安市总OFP为222.087×103 t,间/对-二甲苯、甲苯、邻-二甲苯等对总OFP的贡献率为72.40%;溶剂使用源对总OFP的贡献率最大,其次是生物质燃烧源,并且生物质燃烧源单位质量VOCs的OFP最强. ④2016年西安市总SOAFP为318.347 t,间/对-二甲苯、甲苯、邻-二甲苯、乙苯等对总SOAFP的贡献率为88.65%;溶剂使用源对总SOAFP的贡献率最大,其次是生物质燃烧源,而且溶剂使用源单位质量VOCs的SOAFP强于其他排放源.研究显示,与其他地区VOCs单位面积排放清单相比,西安市VOCs单位面积排放强度处于中等水平.   相似文献   

10.
林旭  严仁嫦  金嘉佳  许凯儿 《环境科学》2022,43(4):1799-1807
2019年3月1日~2019年5月31日期间采用Syntech Spectras GC955在线气相色谱仪对杭州市大气环境中挥发性有机物(VOCs)进行了在线连续监测,分析了VOCs体积分数的组成特征、 PM2.5和O3协同控制的优控VOCs物种和VOCs特征污染物比值.结果表明,烷烃是VOCs体积分数中最重要的组分,贡献了62.40%. C2~C6的烷烃、苯系物、乙烯和乙炔是VOCs关键物种.烯烃和芳香烃是OFP的主要贡献组分,贡献率分别为41.35%和37.50%.芳香烃是SOA的主要贡献者,贡献率超过90%.低碳的烷烃、低碳烯烃和苯系物是OFP的关键贡献物种,控制好甲苯、间/对-二甲苯和邻-二甲苯这3种苯系物,是O3和PM2.5协同控制的关键.采样点大气中VOCs除了受机动车尾气的影响外,溶剂使用等工业排放的影响也较为显著.  相似文献   

11.
大气中二次有机气溶胶(SOA)是PM25中的重要组成部分,挥发性有机物(VOCs)的光化学氧化是其主要来源之一.从VOCs转化生成SOA的过程非常复杂,参数化方法是一种相对简化的估算方式,可以用于区分不同VOCs物种对SOA生成的贡献.本文介绍了基于二产物和基于挥发性分级两种常用的参数化估算方法,并总结分析文献报道的SOA估算结果.文章中也指出现在的参数化估算还存在一些问题,如何准确量化VOCs向SOA的转化过程将是大气化学未来的重要研究工作.  相似文献   

12.
运用大气挥发性有机物快速在线连续自动监测系统,于2013年和2014年的8月对南京市区大气中VOCs进行观测,结果表明,VOCs的浓度分别为51.73×10-9和77.47×10-9.利用OH消耗速率(LOH)有效评估VOCs的大气化学反应活性.烯烃和芳香烃是这2年夏季南京市大气VOCs中对LOH贡献最大的关键活性组分.用FAC法估算南京SOA生成潜势,得到2013和2014年夏季SOA浓度分别为1.95μg/m3和1.01μg/m3;烷烃和芳香烃对SOA的生成潜势分别占4.01%、94.8%和4.46%、94.57%.用PMF模型对南京VOCs进行来源解析,结果表明,2013年夏季南京大气VOCs的最大来源为燃料挥发(22.7%)、其次为天然气和液化石油气泄漏(19.5%)、石油化工业(13.5%)、汽车尾气排放(17.7%)、天然源排放(13.4%)和涂料/溶剂的使用(13.2%),而2014年夏季南京大气VOCs的最大来源为天然气和液化石油气泄漏(35.2%)、其次为石油化工业(20.6%)、不完全燃烧(20.5%)、燃料挥发(15.7%)和汽车尾气排放(8.1%).  相似文献   

13.
北京城市大气中NOx、CO、O3的变化规律研究   总被引:11,自引:5,他引:11  
对北京市大气中O3浓度变化规律及O3浓度变化与NOc、CO浓度变化之间的关系进行了研究。结果表明:O3浓度随温度指数上升,O3浓度和NOx、CO浓度变化之间无简单规律可寻。  相似文献   

14.
使用ZF-PKU-1007大气挥发性有机物(VOCs)在线连续监测系统,于2018年8月25日至9月30日在廊坊开发区对99种VOCs进行监测,并开展不同O3污染情况下ω(VOCs)特征、大气反应活性及来源研究.结果表明,监测期间廊坊开发区ω(VOCs)平均为(75.17±38.67)×10-9,O3污染日和清洁日ω(VOCs)平均分别为(112.33±30.96)×10-9和(66.25±34.84)×10-9,污染日ω(VOCs)较清洁日偏高69.6%;对于大气反应活性,污染日和清洁日VOCs对臭氧生成潜势(OFP)的贡献均以醛酮类、芳香烃、烯烃和烷烃为主,对于羟基消耗速率(L·OH),污染日以芳香烃(30.0%)和烯烃(25.8%)为主,而清洁日烯烃贡献(29.8%)略高于芳香烃(28.0%);PMF源解析结果显示,机动车排放(34.4%)、溶剂使用及挥发源(31.7%)、石化工业源(15.7%)、燃烧源(11.1%)和植物排放源(7.9%)为监测期间VOCs的主要来源,另外污染日溶剂使用及挥发源、植物源排放较清洁日升高13.1%和1.2%,可能与污染日温度较高有关.因此,机动车排放和溶剂使用及挥发为廊坊开发区8~9月VOCs的控制重点.  相似文献   

15.
为研究石家庄市挥发性有机物(VOCs)的化学特征和污染来源,于2017年3月至2018年1月取3个国控点进行环境VOCs的罐采样及分析,并结合臭氧(O3)及气象数据进行相关性分析,采用正交矩阵因子模型(PMF)开展溯源解析;为确定夏季O3的污染周期,利用小波分析研究其时序特征.结果表明,石家庄市采样期间VOCs浓度为(137.23±64.62)μg·m-3,以卤代烷烃(31.77%)、芳香烃(30.97%)和含氧VOCs(OVOCs,23.76%)为主.采样期间VOCs的季节变化为:冬季(187.7μg·m-3)>秋季(146.8μg·m-3)>春季(133.24μg·m-3)>夏季(107.1μg·m-3),空间特征呈自西向东逐渐增加的格局.监测期内O3与VOCs、NO2呈显著负相关,与温度、日照时数、风速和能见度呈正相关.在夏季O3≤160μg·m...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号