首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus (P) surface run-off losses were studied following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farm yard manure (FYM) and inorganic nitrogen (N) and P fertiliser were compared, over a 4-year period (1993-97). N losses from the same studies are reported in a separate paper. The application of cattle FYM and, especially slurry, to the silty clay loam soil increased both particulate and soluble P loss in surface water flow. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increased application of slurry solids increased all forms of P loss via surface run-off; the results suggested that a threshold for greatly increased risk of P losses via this route, as for N, occurred at ca. 2.5-3.0 t/ha solids loading. This approximates to the 50 m3/ha application rate limit suggested for slurry within UK 'good agricultural practice'. The studies also provided circumstantial evidence of the sealing of the soil surface by slurry solids as the major mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Losses of total and soluble P, recorded for each of the 4 years of experiments, reached a maximum of only up to 2 kg/ha total P (TP), even after slurry applications initiating run-off. Whilst these losses are insignificant in agronomic terms, peak concentrations of P (up to 30,000 micrograms/l TP) in surface water during a run-off event, could be of considerable concern in sensitive catchments. Losses of slurry P via surface run-off could make a significant contribution to accelerated eutrophication on entry to enclosed waters, particularly when combined with high concentrations of NO3(-)-N. Restricting slurry application rates to those consistent with good agronomic practice, and within the limits specified in existing guidelines on good agricultural practice, offers the simplest and most effective control measure against this potentially important source of diffuse pollution.  相似文献   

2.
Research was conducted on nitrogen (N) surface run-off losses following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farmyard manure and inorganic N and phosphorus (P) fertiliser were compared, over a 4-year period (1993-97). P losses from the same studies are reported in a separate paper. The application of cattle slurries to the silty clay loam soil increased the loss of solids and NH4(+)-N in surface water flow compared to control plots receiving inorganic fertiliser only, or no treatment, but had little effect on NO3(-)-N losses by this route. Results were consistent with other observations that rainfall events immediately after manure applications are particularly likely to be associated with nutrient run-off losses. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increasing slurry application rate and, in particular, slurry solids loading, increased solids and NH4(-)-N losses via surface run-off. The threshold, above which the risk of losses via surface run-off appeared to be greatly increased, was ca. 2.5-3.0 t/ha slurry solids, which approximates to the 50 m3/ha limit suggested for slurry within UK 'good agricultural practice'. Sealing of the soil surface by slurry solids appears to be a possible mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Total losses of NH4(+)-N and NO3(-)-N during the 4-year monitoring period were insignificant in agronomic terms, but average soluble N concentrations (NH4(+)-N + NO3(-)-N) in run-off, ranging from ca. 2.0 mg/l, up to 14.0 mg/l for the higher rate slurry treatments. Peak concentrations of NH4(+)-N > 30 mg/l, are such as to be of concern in sensitive catchments, in terms of the potential for contribution to accelerated eutrophication and adverse effects on freshwater biota.  相似文献   

3.
Large inputs of phosphorus (P) in chemical fertilizers and feed supplements since 1978 have improved soil P status in arable land in China, but have also created challenges by increasing P concentrations in manure and exacerbating water quality degradation. Arable land in China can be divided into five management zones based on soil P chemistry, with 15–92 % of arable land having lower P status than the agronomic optimum and 0.3–7.2 % having severe risks of P leaching losses. A scenario analysis of soil P budget and agronomic P demand during 2011–2030 highlighted the great pressure China faces in sustainable P management and the need for drastic changes in current practices. This includes new policies to reduce P supplementation of feed and improved P use efficiency by livestock and programs to expand the adoption of appropriate fertilization, soil conservation, and drainage management practices to minimize P losses.  相似文献   

4.
Ingestion of soils with high fluoride (F) concentration may cause chronic fluorosis in grazing animals. Analysis of New Zealand pasture soils with long-term phosphorus (P) fertilisation histories showed that total surface soil (0-75 mm depth) F concentration increased up to 217-454 mg kg-1 with P fertiliser application. One-third to two-thirds of F applied in fertilisers resides in the top 75 mm soil depth. Pasture forage accumulation of F was low, and therefore, F intake by grazing animals through pasture consumption is expected to be much lower than F intake by soil ingestion. Ten annual applications of single superphosphate (30 and 60 kg P ha-1 year-1) to a Pallic Soil (Aeric Fragiaqualf) significantly increased total F and labile F (0.01 M CaCl2 extract) concentrations to 200 and 120 mm depths, respectively, of the 300 mm depth investigated. The mobility of F in the soil profile was similar to two other elements, P and cadmium derived from the fertiliser.  相似文献   

5.
The same emission factor is applied to fertiliser N and manure N when calculating national N2O inventories. Manures and fertilisers are often applied together to meet the N needs of the crop, but little is known about potential interactions leading to an increase in denitrification rate or a change in the composition of the end-products of denitrification. We used the 15N gas-flux method in a laboratory experiment to quantify the effect of liquid manure (LM) application on the fluxes of N2 and N2O when the soil contained fertiliser 15NO3-. LM increased the mole fraction of N2O from 0.5 to 0.85 in the first 12 h after application. More than 94% of the N2O was from the reduction of NO3-, probably due to aerobic nitrate respiration as well as respiratory denitrification.  相似文献   

6.
Oryzalin fate and transport in runoff water in Mediterranean vineyards   总被引:3,自引:0,他引:3  
An experimental study was conducted in a 91.4-ha Mediterranean vineyard catchment in southern France to characterize the fate and transport of oryzalin in runoff water and thus to assess the risk of contamination of surface waters. Oryzalin concentrations in soil were monitored on two fields, one no-till and one tilled from March 1998 to March 2000. Concentrations in solution and on solid phase of runoff water were measured at the outlets of both fields and the catchment. The droughts in the two summer periods reduced the dissipation of oryzalin and increased its field half-life up to 35 days. Consequently, oryzalin was detected throughout the year in runoff water, with maximum dissolved concentrations > 600 microg l(-1) at the field scale. Oryzalin transport essentially occurred in solution. At the no-till field, seasonal losses were 2.29% and 1.89% of the applied amount in 1998 and 1999, respectively. The corresponding values at the tilled field were 1.56% and 0.29%, since tillage reduced total losses by reducing surface runoff. At the catchment scale, oryzalin concentrations were smaller than those at the field scale, due to dilution effects and staggering of application. Large part of the overland flow from the fields reinfiltrated in the ditches before reaching the outlet of the catchment. As a result, seasonal oryzalin losses were <0.2% of the applied amount.  相似文献   

7.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

8.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

9.
This study investigated the forms of soil P released to solution, accuracy of their determination, and influence of colloids on P sorption/desorption dynamics. A Hagerstown silt loam, amended with dairy and poultry manure or superphosphate at five rates (0, 25, 50, 100, and 200 kg P ha(-1)), was extracted at two soil:solution ratios (1:5 and 1:100) and filtered at three pore sizes (0.8, 0.45, and 0.22 microm). Results showed that relative to the proportion of dissolved organic P (DOP, determined as the difference between total dissolved P [TDP] and P detected by ion chromatography), DRP increased with amendment rate. Relative to Mehlich-3 extractable P, DRP exhibited a power relationship with a much greater potential for soil P release at concentrations in excess of ca. 50 mg Mehlich-3 P kg(-1). Concentrations of DRP, determined by the acid molybdate method, were on average 12.5% greater than P detected by ion chromatography indicating P was solubilised during colorimetric determination. A linear relationship was found between total Al and DRP, which could indicate acid mediated hydrolysis of A1-humic-P substances, although acid mediated desorption of P from colloids cannot be discounted. No difference in solubilised P was found between solutions filtered at 0.22 and 0.45 microm, but was found between 0.8 microm and smaller filter sizes. Organic P extracted from manured soils was more recalcitrant than that extracted from soils amended with superphosphate, the later attributed to its accumulation in more labile pools. The sorption/desorption of P by colloids in solution were greatly affected by the rate of amendment and the soil:solution extraction ratio. More P was sorbed by superphosphate solutions compared to dairy manure amended soil solutions and was attributed to the saturation of colloidal P sorption sites by organic matter. In order to minimise the effects of colloids on P dynamics and the potential for hydrolysis in solution, filtration to at least 0.45 microm is required. However, soils with a lesser aggregate stability may require additional filtration.  相似文献   

10.
The transport of oxytetracycline, chlortetracycline, and ivermectin from manure was assessed via surface runoff on irrigated pasture. Surface runoff plots in the Sierra Foothills of Northern California were used to evaluate the effects of irrigation water application rates, pharmaceutical application conditions, vegetative cover, and vegetative filter strip length on the pharmaceutical discharge in surface runoff. Experiments were designed to permit the maximum potential transport of pharmaceuticals to surface runoff water, which included pre-irrigation to saturate soil, trimming grass where manure was applied, and laying a continuous manure strip perpendicular to the flow of water. However, due to high sorption of the pharmaceuticals to manure and soil, less than 0.1% of applied pharmaceuticals were detected in runoff water. Results demonstrated an increase of pharmaceutical transport in surface runoff with increased pharmaceutical concentration in manure, the concentration of pharmaceuticals in runoff water remained constant with increased irrigation flow rate, and no appreciable decrease in pharmaceutical runoff was produced with the vegetative filter strip length increased from 30.5 to 91.5 cm. Most of the applied pharmaceuticals were retained in the manure or within the upper 5 cm of soil directly beneath the manure application sites. As this study evaluated conditions for high transport potential, the data suggest that the risk for significant chlortetracycline, oxytetracycline, and ivermectin transport to surface water from cattle manure on irrigated pasture is low.  相似文献   

11.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

12.
Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha?1 year?1. Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future.  相似文献   

13.
This study assessed the runoff potential of tylosin and chlortetracycline (CTC) from soils treated with manure from swine fed rations containing the highest labeled rate of each chemical. Slurry manures from the swine contained either CTC at 108 μ g/g or tylosin at 0.3 μ g/g. These manures were surface applied to clay loam, silty clay loam, and silt loam soils at a rate of 0.22 Mg/ha. In one trial, tylosin was applied directly to the soil surface to examine runoff potential of water and chemical when manure was not present. Water was applied using a sprinkler infiltrometer 24-hr after manure application with runoff collected incrementally every 5 min for about 45 min. A biofilm crust formed on all manure-treated surfaces and infiltration was impeded with > 70% of the applied water collected as runoff. The total amount of CTC collected ranged from 0.9 to 3.5% of the amount applied whereas tylosin ranged from 8.4 to 12%. These data indicate that if surface-applied manure contains antimicrobials, runoff could lead to offsite contamination.  相似文献   

14.
Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.  相似文献   

15.
Marc I. Stutter 《Ambio》2015,44(2):207-216
Concerns about the sustainability of inorganic fertilizers necessitate the characterization of alternative P source materials for agronomic P-efficiencies and P losses via leaching. Firstly, this study examined nutrient compositions including P speciation of seven soil amendments: sewage sludge (SS), anaerobic digestate (AD), green compost (GC), food waste compost (FWC), chicken manure (CM), biochar, and seaweed. Secondly, soil P leaching and availability was studied on a subset of four materials (SS, AD, GC, and CM). Sorption of extracts onto columns of a test soil showed strong P retention for SS and compost, but weak P sorption for CM and especially AD, suggesting short-term leaching risks for soil applied AD. Limited P desorption with water or citrate indicated sorbed P was strongly fixed, potentially limiting crop availability. These data indicate that variation in P forms and environmental behavior should be understood to maximize P usage, but minimize leaching and soil P accumulation. Hence, different alternative P source materials need differing recommendations for their agronomic management.  相似文献   

16.
The effects of high inputs of phosphate fertiliser on Cd concentrations were studied in soil solutions extracted from topsoils. Soils were sampled along a transect at distances of 1-100 m away from a fertiliser bin. The transect was sampled four times during 1 year. Soil solutions were analysed for Cd, pH, major cations and anions, and other heavy metals (As, Cr, Cu, Pb). For one of the transect samplings, soil total Cd, Cr, Cu, Pb and P were also measured. Cd speciation in the soil solutions was calculated by the GEO-CHEM-PC computer program. Chemical composition varied substantially along the transect, and also between samplings, indicative of seasonal effects and the influence of a fresh application of superphosphate fertiliser during the year. Application of fertiliser decreased soil solution pH and increased the levels of heavy metals in soil solution. Generally, soil total Cd, Cr, Cu, Pb, and P decreased with increasing distance from the fertiliser bin. Correlations between P and the four heavy metals were: P and Cd (R2 = 0.978), P and Cr (R2 = 0.712), P and Pb (R2 = 0.538), P and Cu (R2 = 0.267). Less than 1% of the total Cd in the soil samples was found in the soil solution. The free metal ion Cd2+ accounted for 55-90% of solution Cd. Of the complexed species of Cd, the chloride and sulphate complexes were usually the most important, even when nitrate and phosphate concentrations were relatively high. The presence of As, Cr, Cu and Pb had no effect on Cd speciation.  相似文献   

17.
Although estrogens originating from dairy manure applied to agricultural soils as a fertilizer can potentially contaminate surface water and groundwater, the variables that control transport are poorly understood. Our objective was to assess the potential for off-site movement of endogenous dairy cattle estrogens when manure is applied on fields at agronomically relevant fertilization rates. Estrone (E1), 17α-estradiol (α-E2), and 17β-estradiol (β-E2) were used in laboratory sorption, desorption, and transformation incubations with both manure and an agriculturally relevant soil. Sorption on manure containing 44% organic carbon exceeded sorption on soil containing 0.8% organic carbon by 20 to 150 times, following the pattern of β-E2 > α-E2 > E1. Approximately 20% of E1 and 17% of α-E2 were desorbed from manure, whereas only about 4% of β-E2 was desorbed. Thirty to seventy percent of α-E2 and β-E2 were converted to E1 in soil and manure, making it imperative that transformation reactions be considered when predicting transport and potential biological effects in the environment. Overall results indicate that high organic carbon concentrations and relatively low amounts of desorption inhibit the potential for off-site transport of endogenous dairy manure estrogens.  相似文献   

18.
Losses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Therefore, in some climatic regions, slurry spreading opportunities may be limited. The current study examined the impact of three time intervals (TIs; 12, 24 and 48 h) between pig slurry application and simulated rainfall with an intensity of 11.0?±?0.59 mm h?1. Intact grassed soil samples, 1 m long, 0.225 m wide and 0.05 m deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial-grade liquid alum (8 % Al2O3) applied at a rate of 0.88:1 [Al/ total phosphorus (TP)], (2) commercial-grade liquid ferric chloride (38 % FeCl3) applied at a rate of 0.89:1 [Fe/TP] and (3) commercial-grade liquid poly-aluminium chloride (10 % Al2O3) applied at a rate of 0.72:1 [Al/TP]. Results showed that an increased TI between slurry application and rainfall led to decreased P and SS losses in runoff, confirming that the prohibition of land-spreading slurry if heavy rain is forecast in the next 48 h is justified. Averaged over the three TIs, the addition of amendment reduced all types of P losses to concentrations significantly different (p?<?0.05) to those from unamended slurry, with no significant difference between treatments. Losses from amended slurry with a TI of 12 h were less than from unamended slurry with a TI of 48 h, indicating that chemical amendment of slurry may be more effective at ameliorating P loss in runoff than current TI-based legislation. Due to the high cost of amendments, their incorporation into existing management practices can only be justified on a targeted basis where inherent soil characteristics deem their usage suitable to receive amended slurry.  相似文献   

19.
The objective of this study was to determine the impact of manure placement depth on crop yield and N retention in soil. Experimental treatments were deep manure injection (45 cm), shallow manure injection (15 cm), and conventional fertilizer-based management with at least three replications per site. Water infiltration, and changes in soil N and P amounts were measured for up to 30 months and crop yield monitored for three seasons following initial treatment. Deep and shallow manure injections differed in soil inorganic N distributions. For example, in the manure slot the spring following application, NO3-N in the surface 60 cm was higher (p < .01) when injected 15 cm (21.4 μ g/g) into the soil than 45 cm (11.7 μ g/g), whereas NH4-N had opposite results with shallow injection having less (p = 0.045) NH4-N (102 μ g/g) than deep (133 μ g/g) injection. In the fall one year after the manure was applied, NO3-N and NH4-N were lower (p = 0.001) in the shallow injection than the deep injection. The net impact of manure placement on total N was that deep injection had 31, 59, and 44 more kg N ha? 1 than the shallow injection treatment 12, 18, and 30 months after application, respectively. Deep manure injection did not impact soybean (Glycine max L.) yield, however corn (Zea mays L.) yield increased if N was limiting. The higher corn yield in the deep injected treatment was attributed to increased N use efficiency. Higher inorganic N amounts in the deep injection treatment were attributed to reduced N losses through ammonia volatilization, leaching, or denitrification. Results suggest that deep manure placement in glacial till soil may be considered a technique to increase energy, N use efficiency, and maintain surface and ground water quality. However, this technique may not work in glacial outwash soils due to the inability to inject into a rocky subsurface.  相似文献   

20.
This study was designed to monitor molinate losses in surface and underground waters during Ordram application in a rice field situated in central Portugal. Water samples were collected from different sites, before, during and about one month and a half after Ordram application. Molinate quantification was based on a solid-phase microextraction (SPME) method followed by gas chromatography with flame photometric detector (GC-FPD) analysis, and led to the conclusion that the herbicide was dissipated in the environment, reaching levels as high as 3.9 microgl(-1) in underground water and 15.8 microgl(-1) in the river receiving tail waters. The feasibility of the application of treatment methodologies based on adsorption or biodegradation as processes to remove molinate from real-world waters was assessed. These methods seem suitable to reduce molinate concentrations to values in the range of the legally recommended limits (<0.5 microgl(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号