共查询到20条相似文献,搜索用时 0 毫秒
1.
Carsten Albrecht Brühl Bernd Guckenmus Markus Ebeling Ralf Barfknecht 《Environmental science and pollution research international》2011,18(1):31-37
Background, aim and scope
Seed treatments are widely used on cereals and other annual crops throughout Europe. Most of the formulated pesticide is found on the outside of the seed, the husk. Risk assessments of seed treatments are especially needed for granivorous mice living in the agricultural landscape e.g. for registration using the guidance for risk assessment for birds and mammals (EFSA 2009). The dehusking of seeds before consumption is a known behaviour of these mammals, but so far, no quantitative data on the reduction of exposure of seed treatments by dehusking were published. Therefore, we aimed at providing a first quantitative estimate of this behaviour-related exposure reduction for the wood mouse (Apodemus sylvaticus) with different seed types. 相似文献2.
Michael Méndez Priscilla Obando Margaret Pinnock-Branford Clemens Ruepert Luisa E. Castillo Freylan Mena Gilbert Alvarado 《Environmental science and pollution research international》2016,23(21):21238-21248
Declines of amphibian populations have been a worldwide issue of concern for the scientific community during the last several decades. Efforts are being carried out to elucidate factors related to this phenomenon. Among these factors, pathogens, climate change, and environmental pollution have been suggested as possible causes. Regarding environmental pollutants, some pesticides are persistent in the environment and capable of being transported long distances from their release point. In Costa Rica, some pesticides have been detected in protected areas, at locations where amphibian populations have declined. Information about toxicity of pesticides used in Costa Rican agriculture to amphibians is still scarce, particularly for native species.Toxicity tests with chlorothalonil, a fungicide intensively used in Costa Rica, were carried out exposing tadpoles of three Costa Rican native species: Agalychnis callidryas, Isthmohyla pseudopuma, and Smilisca baudinii in order to evaluate acute and chronic toxicity as well as the biomarkers cholinesterase activity (ChE), glutathione-S transferase activity (GST), and lipid peroxidation (LPO).96-h LC50: 26.6 (18.9–35.8) μg/L to A. callidryas, 25.5 (21.3–29.7) μg/L to I pseudopuma and 32.3 (26.3–39.7) μg/L to S. baudinii were determined for chlorothalonil. These three species of anurans are among the most sensitive to chlorothalonil according to the literature. Besides, GST was induced in S. baudinii after exposure to sub-lethal concentrations of chlorothalonil while evisceration occurred in S. baudinii and A. callidryas tadpoles exposed to lethal concentrations of the fungicide. Chronic exposure to sub-lethal concentrations accelerated development in S. baudinii and caused lesions in tail of S. baudinii and I. pseudopuma tadpoles. Our results demonstrate that chlorothalonil is highly toxic to native amphibian species and that low concentrations can cause biochemical responses related to phase II of biotransformation and effects on development. 相似文献
3.
Zhou ZF Zheng YM Shen JP Zhang LM He JZ 《Environmental science and pollution research international》2011,18(9):1644-1652
Purpose
Denitrification is an important biochemical process in global nitrogen cycle, with a potent greenhouse gas product N2O. Wastewater irrigation can result in the changes of soil properties and microbial communities of agricultural soils. The purpose of this study was to examine how the soil denitrification genes responded to different irrigation regimes. 相似文献4.
Ezio Ranieri Umberto Fratino Andrea Petrella Vincenzo Torretta Elena Cristina Rada 《Environmental science and pollution research international》2016,23(16):15983-15989
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for CrVI reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal. 相似文献
5.
Little EE Calfee RD Theodorakos P Brown ZA Johnson CA 《Environmental science and pollution research international》2007,14(5):333-337
Background Cobalt cyanide complexes often result when ore is treated with cyanide solutions to extract gold and other metals. These have
recently been discovered in low but significant concentrations in effluents from gold leach operations. This study was conducted
to determine the potential toxicity of cobalt-cyanide complexes to freshwater organisms and the extent to which ultraviolet
radiation (UV) potentiates this toxicity. Tests were also conducted to determine if humic acids or if adaptation to UV influenced
sensitivity to the cyanide complexes.
Methods Rainbow trout (Oncorhynchus mykiss), Daphnia magna, and Ceriodaphnia dubia were exposed to potassium hexacyanocobaltate in the presence and absence of UV radiation, in the presence and absence of
humic acids. Cyano-cobalt exposures were also conducted with C. dubia from cultures adapted to elevated UV.
Results With an LC50 concentration of 0.38 mg/L, cyanocobalt was over a 1000 times more toxic to rainbow trout in the presence of
UV at a low, environmentally relevant irradiance level (4 μW/cm2 as UVB) than exposure to this compound in the absence of UV with an LC50 of 112.9 mg/L. Toxicity was immediately apparent,
with mortality occurring within an hour of the onset of exposure at the highest concentration. Fish were unaffected by exposure
to UV alone. Weak-acid dissociable cyanide concentrations were observed in irradiated aqueous solutions of cyanocobaltate
within hours of UV exposure and persisted in the presence of UV for at least 96 hours, whereas negligible concentrations were
observed in the absence of UV. The presence of humic acids significantly diminished cyanocobalt toxicity to D. magna and reduced mortality from UV exposure. Humic acids did not significantly influence survival among C. dubia. C. dubia from UV-adapted populations were less sensitive to metallocyanide compounds than organisms from unadapted populations.
Conclusions The results indicate that metallocyanide complexes may pose a hazard to aquatic life through photochemically induced processes.
Factors that decrease UV exposure such as dissolved organic carbon or increased pigmentation would diminish toxicity. 相似文献
6.
Montory M Habit E Bahamonde P Fernandez P Grimalt JO Saez K Rudolph I Barra R 《Environmental science and pollution research international》2011,18(4):629-637
Purpose
This paper analyses the presence of polychlorinated biphenyls (PCBs) in escaped: farmed and wild salmons in southern Chile, analysing their concentrations and congener profiles in two species (Oncorhynchus kisutch and Oncorhynchus mykiss). 相似文献7.
Radek Zouzelka Pavlina Cihakova Jana Rihova Ambrozova Jiri Rathousky 《Environmental science and pollution research international》2016,23(9):8317-8326
Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40–70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag+ concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists, physical chemists, and biologists. 相似文献
8.
Strain DNS10 was isolated from the black soil collected from the northeast of China which had been cultivated with atrazine as the sole nitrogen source. Pennisetum is a common plant in Heilongjiang Province of China. The main objective of this paper was to evaluate the efficiency of plant–microbe joint interactions (Arthrobacter sp. DNS10 + Pennisetum) in atrazine degradation compared with single-strain and single-plant effects. Plant–microbe joint interactions degraded 98.10 % of the atrazine, while single strain and single plant only degraded 87.38 and 66.71 % after a 30-day experimental period, respectively. The results indicated that plant–microbe joint interactions had a better degradation effect. Meanwhile, we found that plant–microbe joint interactions showed a higher microbial diversity. The results of microbial diversity illustrated that the positive effects of cropping could improve soil microbial growth and activity. In addition, we planted atrazine-sensitive plants (soybean) in the soil after repair. The results showed that soybean growth in soil previously treated with the plant–microbe joint interactions treatment was better compared with other treatments after 20 days of growth. This was further proved that the soil is more conducive for crop cultivation. Hence, plant–microbe joint interactions are considered to be a potential tool in the remediation of atrazine-contaminated soil. 相似文献
9.
Marcel Amichot Christine Curty Olivia Benguettat-Magliano Armel Gallet Eric Wajnberg 《Environmental science and pollution research international》2016,23(4):3097-3103
Most of the detrimental effects of using conventional insecticides to control crop pests are now well identified and are nowadays major arguments for replacing such compounds by the use of biological control agents. In this respect, the bacterium Bacillus thuringiensis var. kurstaki and Trichogramma (Hymenoptera: Trichogrammatidae) parasitic wasp species are both effective against lepidopterous pests and can actually be used concomitantly. In this work, we studied the potential side effects of B. thuringiensis var. kurstaki on Trichogramma chilonis females. We first evidenced an acute toxicity of B. thuringiensis on T. chilonis. Then, after ingestion of B. thuringiensis at sublethal doses, we focused on life history traits of T. chilonis such as longevity, reproductive success and the time spent on host eggs patches. The reproductive success of T. chilonis was not modified by B. thuringiensis while a significant effect was observed on longevity and the time spent on host eggs patches. The physiological and ecological meanings of the results obtained are discussed. 相似文献
10.
Serge Michalet Soraya Rouifed Thomas Pellassa-Simon Manon Fusade-Boyer Guillaume Meiffren Sylvie Nazaret Florence Piola 《Environmental science and pollution research international》2017,24(26):20897-20907
The expansion of invasive Japanese knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects was yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese knotweed s.l. (Fallopia japonica and Fallopia × bohemica) were grown during 1 and 3 months, in a soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after 3 months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; and (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia sp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level. 相似文献
11.
Paz-Alberto AM Sigua GC Baui BG Prudente JA 《Environmental science and pollution research international》2007,14(7):498-504
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of
the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment
makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive
and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation.
Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were:
(1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass
and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass
species as potential phytoremediators in terms of Pb accumulation by plants.
Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments
using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely
randomized design.
Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39
Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination
in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150
mg kg−1) to the soil.
Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed
to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root
system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency
of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass,
the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what
they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport
of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most
metal removal from the soil.
Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil.
It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also
potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated
soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction
on sites contaminated with high levels of heavy metals; particularly Pb.
Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters,
battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly
vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and
public parks.
ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl) 相似文献
12.
This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology. 相似文献
13.
Hebatalla M. Aldeyarbi Nadia M. T. Abu El-Ezz Panagiotis Karanis 《Environmental science and pollution research international》2016,23(14):13811-13821
The present overview discusses the findings of cryptosporidiosis research conducted in Africa and highlights the currently available information on Cryptosporidium epidemiology, genetic diversity, and distribution on the African continent, particularly among vulnerable populations, including children. It also emphasizes the burden of cryptosporidiosis, which is underestimated due to the presence of many silent asymptomatic carriers.Cryptosporidiosis is recognized as one of the leading causes of childhood diarrhea in African countries. It has dramatic adverse effects on child growth and development and causes increased mortality on a continent where HIV, poverty, and lack of sanitation and infrastructure increase the risk of cryptosporidial waterborne infection. 相似文献
14.
Nazaré Couto Ana Rita Ferreira Paula Guedes Eduardo Mateus Alexandra B. Ribeiro 《Environmental science and pollution research international》2018,25(36):35928-35935
Pharmaceuticals and personal care products (PPCPs) have attracted increasing concern during the last decade because of their widespread uses and continuous release to the aquatic environment. This work aimed to study the distribution of caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS) when they arrive in salt marsh areas and to assess their remediation potential by two different species of salt marsh plants: Spartina maritima and Halimione portulacoides. Experiments were carried out in the laboratory either in hydroponics (sediment elutriate) or in sediment soaked in elutriate, for 10 days. Controls without plants were also carried out. CAF, MBPh, and TCS were added to the media. In unvegetated sediment soaked in elutriate, CAF was mainly in the liquid phase (83%), whereas MBPh and TCS were in the solid phase (90% and 56%, respectively); the highest remediation was achieved for TCS (40%) and mainly attributed to bioremediation. The presence of plants in sediment soaked in elutriate-enhanced PPCPs remediation, decreasing CAF and TCS levels between approximately 20-30% and MBPh by 40%.. Plant uptake, adsorption to plant roots/sediments, and bio/rhizoremediation are strong hypothesis to explain the decrease of contaminants either in water or sediment fractions, according to PPCPs characteristics. 相似文献
15.
Macherius A Kuschk P Haertig C Moeder M Shtemenko NI Bayona AH Guerrero JA Gey M 《Environmental science and pollution research international》2011,18(5):727-733
Aim of the study
Helophytes like rush and reed are increasingly used for phytoremediation of contaminated water. This study characterises the response of rush and reed plants to chemical stressors such as chlorobenzene, benzene and methyl-tert-butyl ether. The extractable wax layer of the cuticle was chosen for detailed investigations due to its multiple, particularly, protective functions for plants and its easy availability for analysis. 相似文献16.
Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water
movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality
by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals
makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The
use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources.
The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes
of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation. 相似文献
17.
I. Jankovská V. Sloup J. Száková I. Langrová S. Sloup 《Environmental science and pollution research international》2016,23(19):19126-19133
The effects of plant-bound zinc (Zn) and cadmium (Cd) on element uptake and their interactions in a parasite-host system were investigated in a model experiment. Male Wistar rats were divided into four groups (C, P, TC and TP). Groups TC and TP were infected with the rat tapeworm Hymenolepis diminuta. Groups C and TC were fed a standard rodent mixture (ST-1) and received 10.5 mg of Zn per week, while groups P and TP were fed a mixture supplemented with the Zn- and Cd-hyperaccumulating plant Arabidopsis halleri at a dosage of 236 mg Zn/week and 3.0 mg Cd/week. Rats were euthanized after 6 weeks, and Cd and Zn levels were determined in rat and tapeworm tissue. The results indicate that tapeworm presence did have an effect on Cd and Zn concentrations in the host tissue; the majority of tissues in infected rats had statistically significant lower Zn and Cd concentrations than did uninfected rats. Tapeworms accumulated more zinc and cadmium than did the majority of host tissues. This important finding confirms the ability of tapeworms to accumulate certain elements (heavy metals) from the host body to their own body tissues. Thus, tapeworms can decrease heavy metal concentrations in host tissues. 相似文献
18.
Jirapat Ananpattarachai Yuphada Boonto Puangrat Kajitvichyanukul 《Environmental science and pollution research international》2016,23(5):4111-4119
The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV–visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7?×?104 CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively. 相似文献
19.
Wilkins K Nielsen KF Din SU 《Environmental science and pollution research international》2003,10(3):162-166
We reported previously that trichodiene, a volatile trichothecene derivative, was produced by a Stachybotrys isolate, also known to produce highly cytotoxic, non-volatile, macrocyclic trichothecenes (satrotoxins). We investigated the relationship between the production of trichodiene and various non-volatile trichothecenes for several molds. Volatile metabolites were concentrated by adsorption on Tenax TA and analyzed by GC/MS, while non-volatile metabolites were separated by HPLC, derivatized and analyzed by GC/MS. Stachybotrys chartarum isolates producing macrocyclic trichothecenes secreted significantly larger amounts of trichodiene and other sesquiterpenes than isolates which only produced simple trichothecenes. The amounts of secreted trichodiene were relatively small in all cases. With the exception of Memnoniella, which excreted small amounts of sesquiterpenes, the other isolates produced varying amounts of sesquiterpenes, including trichodiene, as well as simple tricothecenes, no detectable trichodiene, but large amounts of griseofulvin derivatives. In Stachybotrys there is apparently a correlation between trichodiene and macrocyclic trichothecene production. In the remaining isolates, there was no simple relationship between trichodiene and non-volatile trichothecene synthesis. Trichodiene is produced in larger amounts by Stachybotrys isolates, which also produce satratoxins, but it will be difficult to utilize this metabolite to detect toxic isolates in buildings due to the relatively small amounts excreted. 相似文献
20.
Dian Siswanto Yanvary Chhon Paitip Thiravetyan 《Environmental science and pollution research international》2016,23(17):17067-17076
Trimethylamine (TMA) is a volatile organic compound which causes not only unpleasant odor but also health concerns to humans. The average emission of TMA from food and fishery industries is 20.60 parts per billion (ppb) and emission from the gas exhausters is even higher which reaches 370 parts per million (ppm). In order to select the best plant TMA removal agent, in this study, 13 plants were exposed to 100 ppm of TMA and the remaining TMA concentration in their system was analyzed by gas chromatography (GC). Furthermore, plant metabolites from the selected plant were identified by gas chromatography-mass spectrometry (GC-MS). The result showed that Euphorbia milii was the most superior plant for TMA removal and could absorb up to 90 % of TMA within 12 h. E. milii absorbed TMA via leaf and stem with 55 and 45 % uptake efficiency, respectively. Based on its stomatal movement during the exposure to TMA, it was implied that the plant switched the photosynthetic mode from crassulacean acid metabolism (CAM)-cycling to CAM and CAM-idling. The switching of photosynthetic mode might reduce the stomata role in TMA absorption. Fatty acids, alkanes, and fatty alcohols in the plant leaf wax were also found to contribute to TMA adsorption. Leaf wax, stomata, and other leaf constituents contributed 58, 6, and 36 %, respectively, of the total TMA absorption by the leaf. The analysis and identification of plant metabolites confirmed that TMA was degraded and mineralized by E. milii. 相似文献