首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Abstract: Systematic consideration of uncertainty in data, model structure, and other factors is generally unaddressed in most Total Maximum Daily Load (TMDL) calculations. Our previous studies developed the Management Objectives Constrained Analysis of Uncertainty (MOCAU) approach as an uncertainty analysis technique specifically for watershed water quality models, based on a synthetic case. In this study, we applied MOCAU to analyze diazinon loading in the Newport Bay watershed (Southern California). The study objectives included (1) demonstrating the value of performing stochastic simulation and uncertainty analysis for TMDL development, using MOCAU as the technique and (2) evaluating the existing diazinon TMDL and generating insights for the development of scientifically sound TMDLs, considering uncertainty. The Watershed Analysis Risk Management Framework model was used as an example of a complex watershed model. The study revealed the importance and feasibility of conducting stochastic watershed water quality simulation for TMDL development. The critical role of management objectives in a systematic uncertainty assessment was well demonstrated. The results of this study are intuitive to TMDL calculation, model structure improvement and sampling strategy design.  相似文献   

3.
4.
ABSTRACT: Up to date there are still not many instances that can be found on the practice of a totally closed system of water supply, treatment, and reuse. In the United States, this is partly because the Public Health Service has discouraged such a practice. However, are there sound scientific reasons to support such a decision or is it purely a matter of psychological reason? Are the treatment technologies available today able to achieve the integrated closed system at a reasonable cost, yet without risking the public health? Are there some extra precautions that must be taken in practicing the direct reuse for the drinking purpose? These questions are discussed in this article. Current available technologies for advanced waste treatment are briefly reviewed and the treated effluent qualities obtained by the authors and others are used as a focal point of discussion on the feasibility of practicing the closed system. For this purpose, the treated effluent qualities are compared to the “Ranges of Promulgated Standards for Raw Water Sources of Domestic Water Supply” which have been used by the Public Health Service and several state regulatory agencies.  相似文献   

5.
Many management processes and tools can provide companies with information to support their environmental decision making. Risk assessment, environmental auditing, life cycle assessment and environmental reporting are but a few examples. Each of these has typically evolved independently as the need for it has arisen. Today, however, this abundance of tools can lead to confusion: What is the exact objective of each tool? How do they differ? Are some ‘better’ than others? Should they be used in parallel, sequentially or in place of each other? More importantly, how do they fit together into a coherent environmental management framework that will ensure sound environmental and economic decision making in a company? This paper seeks to answer these questions. It describes the overall environmental framework that has been developed internally within Procter & Gamble and which allows the company to make coherent economically and environmentally sound decisions, in both the short- and long-term.  相似文献   

6.
This article outlines conceptual and methodological issues that must be confronted in developing a sound scientific basis for investigating cumulative effects on freshwater wetlands. We are particularly concerned with: (1) effects expressed at temporal and spatial scales beyond those of the individual disturbance, specific project, or single wetland, that is, effects occurring at the watershed or regional landscape level; and (2) the scientific (technical) component of the overall assessment process. Our aim is to lay the foundation for a research program to develop methods to quantify cumulative effects of wetland loss or degradation on the functioning of interacting systems of wetlands. Toward that goal we: (1) define the concept of cumulative effects in terms that permit scientific investigation of effects; (2) distinguish the scientific component of cumulative impact analysis from other aspects of the assessment process; (3) define critical scientific issues in assessing cumulative effects on wetlands; and (4) set up a hypothetical and generic structure for measuring cumulative effects on the functioning of wetlands as landscape systems.We provide a generic framework for evaluating cumulative effects on three basic wetland landscape functions: flood storage, water quality, and life support. Critical scientific issues include appropriate delineations of scales, identification of threshold responses, and the influence on different functions of wetland size, shape, and position in the landscape.The contribution of a particular wetland to landscape function within watersheds or regions will be determined by its intrinsic characteristics, e.g., size, morphometry, type, percent organic matter in the sediments, and hydrologic regime, and by extrinsic factors, i.e., the wetland's context in the landscape mosaic. Any cumulative effects evaluation must take into account the relationship between these intrinsic and extrinsic attributes and overall landscape function. We use the magnitude of exchanges among component wetlands in a watershed or larger landscape as the basis for defining the geographic boundaries of the assessment. The time scales of recovery for processes controlling particular wetland functions determine temporal boundaries. Landscape-level measures are proposed for each function.  相似文献   

7.
Abstract: Multiple agencies in the Pacific Northwest monitor the condition of stream networks or their watersheds. Some agencies use a stream “network” perspective to report on the fraction or length of the network that either meets or violates particular criteria. Other agencies use a “watershed” perspective to report on the health or condition of watersheds. The agencies often use the same indicators and measurement protocols for data collection and often conduct monitoring in overlapping geographic regions. In these situations, agencies would like to combine data across different monitoring studies in a statistically sound manner to make regional estimates of condition. Three statistical survey design principles will facilitate combining such studies: (1) a clearly specified statistical target population of interest, including elements that comprise the population, (2) a consistent representation of that target population (such as a digital map of the stream network and watersheds), and (3) rules that incorporate randomization to guide the selection of the sample of sites on which measurements will be made. A case study illustrates the application of these design principles using two agency monitoring programs interested in combining stream channel data for different purposes: one for making network summaries and the other for evaluating watershed condition.  相似文献   

8.
The Waquoit Bay Watershed ecological risk assessment was performed by an interdisciplinary and interagency workgroup. This paper focuses on the steps taken to formulate the analysis plan for this watershed assessment. The workgroup initially conducted a series of meetings with the general public and local and state managers to determine environmental management objectives for the watershed. The workgroup then decided that more information was needed on the impacts of six stressors: nutrient enrichment, physical alteration of habitat, altered freshwater flow, toxic chemicals, pathogens, and fisheries harvesting. Assessment endpoints were selected to establish the link between environmental management objectives, impacts of stressors, and scientifically measurable endpoints. The following assessment endpoints were selected: estuarine eelgrass cover, scallop abundance, finfish diversity and abundance, wetland bird distribution and abundance, piping plover distribution and abundance, tissue contaminant levels, and brook trout distribution and abundance in streams. A conceptual model was developed to show the pathways between human activities, stressors, and ecological effects. The workgroup analyzed comparative risks, by first ranking stressors in terms of their potential risk to biotic resources in the watershed. Then stressors were evaluated by considering the components of stressors (e.g., the stressor chemical pollution included both heavy metals and chlorinated solvents components) in terms of intensity and extensiveness. The workgroup identified nutrient enrichment as the major stressor. Nutrient enrichment comprised both phosphorus enrichment in freshwater ponds and nitrogen enrichment within estuaries. Because phosphorus impacts were being analyzed and mitigated by the Air Force Center for Environmental Excellence, this assessment focused on nitrogen. The process followed to identify the predominant stressor and focus the analyses on nitrogen impacts on eelgrass and scallops will serve as an example of how to increase the use of the findings of a watershed assessment in decision making.  相似文献   

9.
ABSTRACT: In order to choose among “best management practices,” forest managers need to predict sediment yield to perennial streams following various forest land operations. The “universal soil loss equation” (USLE) is not directly applicable to forest operations because of the heterogenous soil surface conditions left by harvesting, site preparation, and planting. A sediment hazard index is proposed, to be based on the amount of exposed mineral soil and its proximity to streams. The model offered includes rainfall erosivity, soil erodibility and average land slope, together with the index W. A paired watershed experiment in the central Georgia Piedmont was used to estimate parameters in the model. The experimental basin (80 acres) was clearcut, drum roller chopped twice, and planted by machine. The standard error of estimate of sediment yield was computed to be about 50/lbs/ac per sampling period (four months). Use of William's erogivity index (storm flow times peak flow) reduced the standard error to 33/lbs/ac.  相似文献   

10.
Through the Direct/Delayed Response Project (DDRP), the United States Environmental Protection Agency is attempting to assess the risk to surface waters from acidic deposition in three regions of the eastern United States: the Northeast Region, the Southern Blue Ridge Province, and the Mid-Appalachian Region. The central policy question being addressed by the DDRP is: Within the regions of concern, how many surface water systems (lakes, streams) will become acidic due to current or altered levels of acidic sulfur deposition, and on what time scales? The approach taken by the DDRP is to select a statistically representative set of watersheds in each region of concern and to project the future response of each watershed to various assumed levels of acidic deposition. The probability structure will then be used to extrapolate the watershed-specific results to each region. The data will be used also for statistical investigation of hypothesized relationships between current surface water chemistry and watershed characteristics. Because the needed terrestrial data base was not available, regional watershed surveys were conducted to meet the specific data needs of the DDRP. Maps (1∶24,000) of soils, vegetation, land use, depth to bedrock, and bedrock geology were made for each watershed. The soils were grouped into sampling classes based on their hypothesized response to acidic deposition. Randomized sampling of these classes provided regional means and variances of soil properties that can be applied to individual watersheds. Because of DDRP's need for consistency within and among regions, unique quality control/quality assurance activities were developed and implemented. After verification and validation, the DDRP data base will be made publicly available. This will be a unique and useful resource for others investigating watershed relationships on a regional scale. The results of these surveys and the conclusions of the DDRP will be presented in several future papers. The current paper gives an overview of the context, rationale, logistical considerations, and implementation of these surveys, with special emphasis on the field activities of watershed mapping and soil sampling. This discussion should be useful to those planning, implementing, and managing survey activities in support of regional assessments of other environmental concerns, who are likely to face similar choices and constraints.  相似文献   

11.
Applying Ecological Risk Principles to Watershed Assessment and Management   总被引:6,自引:0,他引:6  
Considerable progress in addressing point source (end of pipe) pollution problems has been made, but it is now recognized that further substantial environmental improvements depend on controlling nonpoint source pollution. A watershed approach is being used more frequently to address these problems because traditional regulatory approaches do not focus on nonpoint sources. The watershed approach is organized around the guiding principles of partnerships, geographic focus, and management based on sound science and data. This helps to focus efforts on the highest priority problems within hydrologically-defined geographic areas. Ecological risk assessment is a process to collect, organize, analyze, and present scientific information to improve decision making. The U.S. Environmental Protection Agency (EPA) sponsored three watershed assessments and found that integrating the watershed approach with ecological risk assessment increases the use of environmental monitoring and assessment data in decision making. This paper describes the basics of the watershed approach, the ecological risk assessment process, and how these two frameworks can be integrated. The three major principles of watershed ecological risk assessment found to be most useful for increasing the use of science in decision making are (1) using assessment endpoints and conceptual models, (2) holding regular interactions between scientists and managers, and (3) developing a focus for multiple stressor analysis. Examples are provided illustrating how these principles were implemented in these assessments.  相似文献   

12.
13.
Ecological risk assessment (ERA) evaluates potential causal relationships between multiple sources and stressors and impacts on valued ecosystem components. ERAs applied at the watershed scale have many similarities to the place-based analyses that are undertaken to develop Total Maximum Daily Loads (TMDLs), in which linkages are established between stressors, sources, and water quality standards, including support of designated uses. TMDLs focus on achieving water quality standards associated with attainment of designated uses. In attempting to attain the water quality standard, many TMDLs focus on the stressor of concern rather than the ecological endpoint or indicators of the designated use that the standard is meant to protect. A watershed ecological risk assessment (WERA), at least in theory, examines effects of most likely stressors, as well as their probable sources in the watershed, to prioritize management options that will most likely result in meeting environmental goals or uses. Useful WERA principles that can be applied to TMDL development include: development and use of comprehensive conceptual models in the Problem Identification step of TMDLs; use of a transparent process for selecting Numeric Targets for TMDLs based on assessment endpoints derived from the management goal or designated use under consideration; analysis of co-occurring stressors likely to cause beneficial use impairment based on the conceptual model; use of explicit uncertainty analyses in the Linkage Analysis step of TMDL development; and frequent stakeholder interactions throughout the process. WERA principles are currently most applicable to those TMDLs in which there is no numeric standard and, therefore, indicators and targets need to be developed, such as many nutrient or sediment TMDLs. WERA methods can also be useful in determining TMDL targets in situations where simply targeting the water quality standard may re-attain the numeric criterion but not the broader designated use. Better incorporation of problem formulation principles from WERA into the TMDL development process would be helpful in improving the scientific rigor of TMDLs.  相似文献   

14.
Road-related erosion was estimated by measuring 100 randomly located plots on a 180 km road network in the middle reach of R'dwood Creek in northwestern California. The estimated erosion ratn of 177 m3 km-1 was contrasted with two earlier studies in nearby parts of the same watershed. A sizable proportion of the great reduction in erosion from that reported in the earlier studies is attributed to changes in forest practice rules. Those changes have resulted in better placement and sizing of culverts and, especially, to less reliance on culverts to handle runoff from logging roads.  相似文献   

15.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

16.
ABSTRACT: Watershed stewardship activities throughout North America have evolved into a process that requires more involvement in planning and decision making by community stakeholders. Active involvement of all stakeholders in the process of watershed stewardship is dependent on effective exchange of information among participants, and active involvement of a wide range of stakeholders from “communities of place” as well as those from “communities of interest.” We developed a map‐based stream narrative tool as a means to: (a) assemble a wealth of incompletely documented, “traditional” ecological or natural history observations for rivers or streams; and (b) promote a higher level of active involvement by community stakeholders in contributing to information‐based, watershed management. Creation of stream narratives is intended for use as a tool to actively engage local stakeholders in the development of a more comprehensive information system to improve management for multiple stewardship objectives in watersheds. Completion of map‐based stream narrative atlases provides a valuable supplement to other independent efforts to assemble observations and knowledge about land‐based natural resources covering entire watersheds. We are confident that completion of stream narrative projects will make a valuable addition to the information and decision making tools that are currently available to the public and resource agencies interested in advancing the cause of community‐based approaches to watershed and ecosystem management.  相似文献   

17.
王敏 《中国环境管理》2024,16(2):121-128
《长江保护法》《黄河保护法》为长江、黄河流域的区域协同立法提供了法律依据,在流域保护区域协同立法“入法”后,需要明晰其权力空间与运行规则,提升其科学化、规范化水平。流域保护区域协同立法在本质上仍属于地方立法,是功能主义进路下解决跨行政区域流域保护难题的一种选择,是流域整体性保护的立法回应。就其功能而言,具有落实国家立法确立的流域保护整体目标的实施性功能,以地方合作为中心,解决那些通过单独地方立法难以解决的跨行政区域地方性流域保护问题的协调性、自主性、创新性功能。在此基础上,应当通过明晰其立法层级,建立地方立法规划协同机制,改、废、释的协同机制,交叉备案与后评估机制,深化公众参与机制,完善流域保护区域协同立法的运行规则。  相似文献   

18.
Patterson, Lauren A., Jeffrey Hughes, Glenn Barnes, and Stacey I. Berahzer, 2012. A Question of Boundaries: The Importance of “Revenuesheds” for Watershed Protection. Journal of the American Water Resources Association (JAWRA) 48(4): 838‐848. DOI: 10.1111/j.1752‐1688.2012.00655.x Abstract: Watersheds transcend jurisdictional boundaries; raising important questions of who should pay for watershed protection, and how can watershed governance be funded? The responsibility and cost for watershed protection has progressively devolved to local governments, resulting in additional negative externalities and financing challenges. Watershed governance structures have formed at the scale of the watershed, but they often lack the financing mechanisms needed to achieve policy goals. Financing mechanisms via local governments provide a reliable source of revenue and the flexibility to address watershed specific issues. We develop a “revenueshed” approach to access the initial challenges local governments face when seeking to finance trans‐jurisdictional watershed governance. The revenueshed approach engages local governments into discussion and implementation of financial strategies for collaborative watershed governance. Legislation places water quality regulations primarily on local governments inside the watershed. The revenueshed approach extends the financial and stewardship discussion to include local governments outside the watershed that benefit from the watershed. We applied the revenueshed approach to the Mills River and Upper Neuse watersheds in North Carolina. Mills River had a partnership governance seeking revenue for specific projects, whereas the Upper Neuse sought long‐term financial stability to meet new water quality legislation.  相似文献   

19.
ABSTRACT: Successful watershed management requires consideration of multiple objectives and the efficient use of scarce public and private resources. One way to address these multi-faceted issues is through Social Benefit-Cost Accounting (SBCA). SBCA is a systematic method of addressing complex social and economic issues relevant to proposed watershed management projects. Benefits of using this technique include: benefits and costs of watershed projects are better understood; politically sensitive issues tend to be put into perspective; and stakeholders' interests are placed on a level playing field. An example from Bogota, Colombia demonstrates how SBCA can be used to value the benefits and costs of a proposed project. By addressing the benefits and costs to all stakeholders, the design of watershed management programs can be improved to achieve goals in a cost-effective manner.  相似文献   

20.
One of the most significant junctures in natural resource planning and management in recent years has been the emergence of community-based natural resource management (CBNRM). The central focus of CBNRM is the environment, of course. However, it explicitly considers the local economy and community as well. It is a highly participatory approach to local, place-based projects, programs and policies aimed simultaneously at environmental and community health. This paper is an attempt to shed light on what happens in the local economy and community as a result of pursuing a CBNRM strategy. Oregon has been in the vanguard in putting CBNRM into operation. A key example is the state's experience with local watershed councils and the state agency that supports them, the Oregon Watershed Enhancement Board (OWEB). Drawing from a larger study of Oregon's watershed councils, we ask and answer the questions: ‘What direct contribution do watershed councils make to the local economies of Oregon?’; ‘Do watershed councils contribute to ‘civic engagement’ in Oregon?’ and ‘Do they enhance individuals' and communities’ capacity to engage in public issues beyond watershed council activities?’  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号