首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
将天然黄豆荚分别用氯化铵、三乙基苄基氯化铵(TEBAC)、十八烷基二甲基苄基氯化铵(SDMBA-Cl)进行改性,制备改性黄豆荚吸附剂。探讨了用SDMBA-Cl改性黄豆荚吸附处理苯酚废水的条件及机理。结果表明:当苯酚溶液初始浓度为100 mg·L~(-1),吸附剂投加量为30 g·L~(-1),pH为9.0,吸附时间为120 min时,该吸附剂对苯酚废水的去除率达到72.3%。此吸附过程符合准二级动力学方程,以化学吸附为主;Langmuir方程能较好的拟合等温吸附过程,为单分子吸附。  相似文献   

2.
郭俊元  王彬 《环境科学》2016,37(5):1852-1857
采用十六烷基三甲基溴化铵(HDTMA)对天然沸石进行改性,研究了沸石的改性条件、改性沸石投加量、废水p H值、反应时间等对HDTMA改性沸石去除废水中对硝基苯酚性能的影响,并分析了吸附动力学和吸附等温线.结果表明,改性沸石对废水中对硝基苯酚的吸附效果明显高于天然沸石,当制备改性沸石的HDTMA溶液的质量分数为1.2%,且其p H值为10时,改性沸石对废水中对硝基苯酚的吸附量达到2.53 mg·g~(-1),远高于天然沸石的0.54 mg·g~(-1).吸附实验中,改性沸石投加量8 g·L~(-1),反应时间90 min,p H=6的条件下,HDTMA改性沸石对废水中对硝基苯酚的去除率高达93.9%.吸附动力学和等温线研究表明,一级动力学方程能够更好地拟合沸石吸附对硝基苯酚的过程(R20.90),不同温度条件下Langmuir等温线拟合方程的相关系数均在0.90以上,数据和方程拟合性较好.  相似文献   

3.
有机改性凹凸棒石对养猪废水中有机物的吸附研究   总被引:4,自引:0,他引:4  
研究表征了十二烷基二甲基甜菜碱和十六烷基三甲基溴化铵改性凹凸棒石的结构,探讨了改性凹凸棒石对猪粪废水中的有机污染物的吸附性能及机理,并考察了改性剂修饰比例、废水p H、吸附剂的投加量对吸附过程的影响.结果表明,两种改性剂成功结合到了凹凸棒石表面,有机改性凹凸棒石的晶体结构未发生改变,但对有机污染物的吸附能力显著高于原土.两性和阳离子改性凹凸棒石吸附有机污染物的最佳参数为:修饰比例为100%,吸附剂浓度为16 g·L~(-1),p H=4(阳离子改性为6),对猪粪废水中COD的去除率分别达到88%和92%,吸附量分别达到79 mg·g~(-1)和82 mg·g~(-1).吸附过程均符合二级动力学模型(R20.998),两性和阳离子改性凹凸棒石对有机物的吸附分别符合Freundlich和Langmuir等温式.有机改性凹凸棒石的疏水性增强,提高了对有机污染物的吸附能力,其沉降性能良好,这使其作为一种吸附剂用于实际养猪废水的处理成为可能.  相似文献   

4.
采用生物吸附法去除废水中Th(Ⅳ)离子,研究了水生浮萍化学改性后吸附Th(Ⅳ)的行为特性、吸附模型及吸附机理.以浮萍、三聚氰胺和甲醛为原料,通过接枝反应制得三聚氰胺改性浮萍(MELM),能更好的吸附钍离子.结果表明:常温常压下,pH为5.5,吸附剂MELM为0.03 g,Th(Ⅳ)初始浓度为80 mg·L~(-1),反应60 min时,最大吸附率为97.4%,对应吸附量为129.88 mg·g~(-1),吸附量比未经处理的浮萍(最优吸附条件下,吸附量为22.83 mg·g~(-1))吸附量要大.通过Langmuir、Freundlich、Temkin 3种等温吸附模型对数据进行拟合,Langmuir模型能更好的描述吸附剂MELM对Th(Ⅳ)的平衡吸附行为,同时吸附过程能很好的用准二级反应动力学来解释.此外,FTIR实验数据表明,吸附剂MELM表面上氨基、羟基和羰基是主要的作用基团.  相似文献   

5.
改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制   总被引:5,自引:0,他引:5  
史月月  单锐  袁浩然 《环境科学》2019,40(6):2783-2792
本文以废弃稻壳为原料,通过不同改性方法将其制成生物炭吸附剂,并用于水体中甲基橙(MO)的吸附.通过氮吸附、X射线衍射(XRD)、傅立叶转换红外光谱(FT-IR)、扫描电镜分析(SEM)、热重分析(TG)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术分析了改性剂种类、浸渍比和热解温度对生物炭的物理化学性质及对MO吸附量的影响,发现热解温度为400℃,以ZnCl_2为改性剂,浸渍比为2∶1时制备的生物炭Z2RT400对MO的去除效果最好.以Z2RT400为吸附剂,探究吸附剂添加量、吸附时间、初始污染物浓度、溶液pH等对甲基橙吸附效果的影响,结果表明,饱和吸附时间为420 min,吸附反应的最佳pH为4,当吸附剂用量为10 mg,初始甲基橙浓度为2 000 mg·L~(-1)时,Z2RT400对MO的最大吸附量可达1 967. 72 mg·g~(-1);当吸附剂添加量为80 mg时,去除率最高可达99. 52%.此外,对吸附机制进行分析,发现吸附等温线数据符合Freundlich模型,吸附动力学数据符合拟二级动力学模型,说明吸附以化学吸附为主,物理吸附为辅.因此,废弃稻壳为原料改性制备的生物炭可作为高效的有机染料吸附剂,并应用于水体中污染物的治理.  相似文献   

6.
郭俊元  陈诚  张萍  何山 《环境科学学报》2018,38(4):1529-1536
采用戊二醛交联FeCl_3制备改性壳聚糖吸附处理染料废水,以20 mg·L~(-1)的亚甲基蓝溶液作为处理对象,探究氯化铁改性壳聚糖(FeCl_3-CTS)投加量、废水p H值、反应时间对其处理亚甲基蓝废水性能的影响,并对吸附动力学、吸附等温线过程进行拟合.结果表明,FeCl_3-CTS对亚甲基蓝废水的处理效果远高于未改性壳聚糖(N-CTS),尤其是在投加量为0.1 g·L~(-1)、p H=6的条件下,经FeCl_3-CTS处理50 min后,亚甲基蓝废水的脱色率高达99.4%,FeCl_3-CTS对亚甲基蓝的吸附容量高达198.8 mg·g~(-1),与N-CTS的54.8%和109.6 mg·g~(-1)相比,均有显著的提高.吸附动力学、吸附等温线拟合结果显示,FeCl_3-CTS对亚甲基蓝废水的吸附过程符合准二级反应动力学方程(R2=0.9992)和Langmuir等温线方程(R~2=0.9995).  相似文献   

7.
范艺  王哲  赵连勤  吴德意 《环境科学》2017,38(4):1490-1496
采用锆对硅藻土进行改性所得锆改性硅藻土,其氧化锆质量分数占12.39%,经XRD鉴定为无定形.SEM结果显示,改性后硅藻土表面出现粗糙多孔的絮状物.相比硅藻土,锆改性硅藻土的比表面积由14.00 m~2·g~(-1)扩大到75.22 m~2·g~(-1).XPS谱图显示,氧化锆与硅藻土之间以化学键方式,而非物理沉积方式结合.锆改性硅藻土对磷的等温吸附线更符合Langmuir模型,拟合得到最大吸附量为10.56 mg·g~(-1).锆改性硅藻土的吸附量按照氧化锆的质量分数计算为81.67 mg·g~(-1)ZrO_2,高于文献报道的纯氧化锆吸附剂.锆改性硅藻土对磷的吸附随pH的上升而下降,结合吸附前后材料的Zr3d高分辨XPS图谱,确定锆改性硅藻土对磷的吸附为配体交换过程.氯离子、硫酸根离子和硝酸根离子共存不会抑制磷的吸附,而碳酸氢根离子具有一定的抑制作用.对磷浓度为2 mg·L~(-1)的富营养化湖水,锆改性硅藻土投加量大于1.25 g·L~(-1)时,反应后磷浓度即可满足《地表水环境质量标准》规定的湖库Ⅲ类标准.  相似文献   

8.
TiO2/膨润土复合材料对Hg2+的吸附性能研究   总被引:1,自引:1,他引:0  
利用纳米TiO_2对膨润土进行复合改性,制备TiO_2/膨润土复合材料.采用电镜扫描、X-射线衍射表征改性前后膨润土的结构和形貌.通过室内模拟实验,以膨润土为对照,研究不同添加量、pH、吸附时间及初始Hg~(2+)浓度等条件下,TiO_2/膨润土复合材料对Hg~(2+)的吸附特性与性能,同时通过正交试验,探究TiO_2/膨润土复合材料吸附Hg~(2+)的最优条件.结果表明,改性后的膨润土颗粒明显变小,且颗粒疏松多空孔,层间距增大.相比于膨润土,TiO_2/膨润土复合材料吸附性能得到极大提高.TiO_2/膨润土复合材料对Hg~(2+)的吸附率均随着添加量、pH、吸附时间的增大而增大,添加量为1.5 g·L~(-1)、pH为7.0、吸附时间为120 min时,吸附率达98.0%以上.但TiO_2/膨润土复合材料对Hg~(2+)的吸附率随着初始Hg~(2+)浓度的增大而减小.通过4种动力学模型拟合发现,吸附过程符合假二级动力学方程,吸附以化学吸附为主.吸附等温线更符合Langmuir等温方程,属于典型的单分子层吸附,最大吸附量为20.66 mg·g-1.吸附Hg~(2+)的最优实验条件:添加量为2.0 g·L~(-1),pH为8.0,初始Hg~(2+)浓度为45 mg·L~(-1),吸附时间为16 h,此时吸附率99.9%,平衡浓度为0.034 mg·L~(-1).  相似文献   

9.
鸟粪石-沸石复合材料对水中镉的吸附性能研究   总被引:2,自引:0,他引:2  
研究以氧化镁负载沸石回收污水中氮磷得到的鸟粪石-沸石复合材料(STR-NZ)为吸附剂,用于对水体中重金属镉的吸附去除.实验采用SEM-EDS、XRD和FTIR等手段对STR-NZ材料进行表征,并考察了投加量、初始pH和反应时间等对STR-NZ材料去除水中Cd~(2+)的影响.结果表明:氧化镁负载沸石材料主要以鸟粪石沉淀的方式实现对水中磷酸盐和氨氮的回收;STR-NZ对水溶液中Cd~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,当Cd~(2+)的初始浓度为50 mg·L~(-1)时,STR-NZ的最佳投加量为0.2 g·L~(-1),Cd~(2+)最大吸附量为249.35 mg·g~(-1), STR-NZ对Cd~(2+)的吸附动力学符合准二级动力学模型,对Cd~(2+)的等温吸附符合Langmuir等温吸附模型,STR-NZ主要通过Cd_5(PO_4)_3(OH)沉淀的方式实现对水中Cd~(2+)的去除.  相似文献   

10.
从海利(常德)有限公司污水处理池水样中分离得到1株耐盐高效苯酚降解菌,该菌可在盐度1%~8%、p H4.0~10.0、温度15~40℃条件下以苯酚为唯一碳源生长,命名为zht I.通过形态特征、生理生化反应、16S r DNA鉴定和BLAST序列比对构建系统发育树,确定菌株zht I为一株不动杆菌Acinetobacter guillouiae;利用Plackett-Burman实验确定葡萄糖浓度、苯酚浓度、p H值为影响菌株zht I降解苯酚的主要因素;采用中心组合实验设计,结合Box-Behnken实验设计及响应面法分析,确定菌株zht I在苯酚浓度801.6 mg·L~(-1)、葡萄糖浓度5.56%、p H值7.3、接种量6%、温度30℃、盐度3%条件下培养72 h,菌株zht I对苯酚的降解率达到93.23%.经降解动力学研究发现菌株zht I对苯酚的最大耐受浓度为1700 mg·L~(-1),菌株zht I降解苯酚的动力学模型符合典型的底物抑制模型,降酚动力学参数为:μmax=2.142 h~(-1),KS=126.952 mg·L~(-1),Ki=476.191 mg·L~(-1).  相似文献   

11.
当前,治理可溶性重金属污染是环境保护的迫切任务.以氧化石墨烯(GO)和铁盐为前驱体,一步合成了部分还原氧化石墨烯-Fe_3O_4复合材料(rGO-Fe_3O_4),探索其作为Cd(II)高效吸附剂的潜力.同时,采用多种手段表征吸附剂结构和特性,重点研究了吸附剂对Cd(Ⅱ)的吸附特性和动力学.结果表明,在吸附剂中,纳米Fe_3O_4颗粒均匀地锚在石墨烯片层之间,避免了片层团聚,赋予其优良的吸附性能.在中性溶液中,使用rGO-Fe_3O_4(500 mg·L~(-1))吸附200.09 mg·L~(-1)Cd(II),5 min即可达到吸附平衡,吸附率和吸附量分别为90.88%和363.99 mg·g~(-1).另外,磁分离回收吸附剂仅需10 s,且循环吸附性良好.进一步研究显示,复合材料对Cd(II)的吸附为吸热、自发的化学吸附,过程受化学吸附和液膜扩散控制.  相似文献   

12.
以净水污泥为原料,选用盐酸、氢氧化钾、柠檬酸钠为改性剂,通过研磨-改性-造粒-焙烧等工艺制备改性净水污泥陶粒吸附剂(以下简称改性陶粒吸附剂),测定其对水中氨氮的吸附量,筛选出最佳改性陶粒吸附剂和最佳改性陶粒吸附剂浓度,并在相同条件下制备原净水污泥陶粒吸附剂(简称原泥陶粒吸附剂)作为对比;采用XRD、BET、FTIR、SEM/EDX分析手段对改性陶粒吸附剂和原泥陶粒吸附剂两种吸附剂进行了表征,并通过静态吸附对比实验,探讨了两种吸附剂对废水中氨氮吸附效果的影响因素;对试验数据进行了吸附等温线和吸附动力学模型拟合研究,并探讨了饱和改性陶粒吸附剂对氨氮的解吸和重复再生效果。结果表明:(1)净水污泥的最佳改性条件为采用0.5 mol/L的柠檬酸钠搅拌混合并在65℃水浴温度下浸泡5 h;(2)改性陶粒吸附剂对氨氮的去除效果与原泥陶粒吸附剂相比有显著提高,当溶液最佳pH为7、饱和吸附时间为6 h、吸附剂投加量为20 g/L、氨氮初始浓度为50 mg/L时,改性陶粒吸附剂的最大吸附量为1.938 mg/g,为原泥陶粒吸附剂的2.46倍;(3)吸附等温线和吸附动力学的拟合结果表明,改性陶粒吸附剂和原泥陶粒吸附剂对氨氮的吸附过程均符合Langmuir模型和准二级动力学模型;(4)饱和改性陶粒吸附剂的最佳再生液为0.1 mol/L的NaOH溶液,经过5次解吸再生后,对氨氮的解吸率仅下降6.53%。  相似文献   

13.
通过室内模拟实验研究了3种不同粒径TiO_2添加量、溶液pH、吸附时间及初始Hg~(2+)浓度等因素对模拟废水中Hg(Ⅱ)吸附效果的影响.由单因素研究可知最优条件为:5 nm TiO_2和100 nm TiO_2添加量分别为7.5 g·L~(-1)和2.0 g·L~(-1),其它条件相同,溶液pH为8.0,初始Hg~(2+)浓度均为15 mg·L~(-1),吸附5 min,汞的去除率分别为99.5%和99.3%;25 nm TiO_2添加量为10 g·L~(-1),溶液pH为8.0,初始Hg~(2+)浓度为15 mg·L~(-1),吸附60 min时,汞的去除率为62.8%.3种粒径TiO_2吸附Hg(Ⅱ)强弱顺序为:100 nm TiO_25 nm TiO_225 nm TiO_2.分两次量吸附结果表明,5nm TiO_2分量吸附效果明显优于单独吸附效果;100 nm TiO_2的分量吸附与单独吸附差异不大.正交试验结果表明,影响Hg(Ⅱ)去除率的因素排序为:溶液pH初始Hg~(2+)浓度吸附时间TiO_2添加量.最优实验方案为:溶液pH=8.0,100 nm TiO_2添加量为2.0 g·L~(-1),初始Hg~(2+)浓度为25 mg·L~(-1),吸附10 min.在此实验条件下,Hg(Ⅱ)去除率为99.9%,吸附后溶液中Hg(Ⅱ)平衡浓度为0.033 mg·L~(-1)0.05mg·L~(-1),低于目前企业规定的水污染物中汞的排放限值,Hg(Ⅱ)的最大吸附量为26.95 mg·g~(-1).吸附等温线符合Langmuir等温方程,说明100 nm TiO_2对Hg(Ⅱ)的吸附是典型的单分子层吸附.  相似文献   

14.
铁锰复合氧化物/壳聚糖珠:一种环境友好型除磷吸附剂   总被引:3,自引:0,他引:3  
付军  范芳  李海宁  张高生 《环境科学》2016,37(12):4882-4890
采用两步法制备了一种环境友好型除磷基吸附剂——铁锰复合氧化物/壳聚糖珠(FMCB),对其进行了表征,并对其磷吸附行为进行了系统研究.表征结果表明,该吸附剂为多孔纤维结构,比表面积为248 m~2·g~(-1),孔容为0.37 m~3·g~(-1).吸附实验结果表明,FMCB对磷的吸附容量远高于纯的壳聚糖颗粒,且Langmuir模型能更好地拟合FMCB对磷的吸附,最大吸附量为13.3 mg·g~(-1)(pH 7.0);准二级动力学模型能更好地拟合FMCB对磷吸附的动力学实验数据;溶液pH对磷的吸附影响较大,随着pH的增大,磷的吸附量逐渐降低;共存的Ca~(2+)和Mg~(2+)对磷吸附略有促进,而共存阴离子对磷吸附具有抑制作用,影响大小顺序为:SiO_3~(2-)CO_3~(2-)SO_4~(2-)≥Cl~-.吸附磷后的FMCB可用NaOH溶液进行脱附再生,并可重复使用.在进水磷初始浓度为3 mg·L~(-1)条件下,吸附达到穿透时(出水磷浓度达0.5 mg·L~(-1)),可处理约800个柱体积的模拟含磷废水.  相似文献   

15.
有机膨润土吸附水中苯酚的动力学   总被引:8,自引:1,他引:8  
比较两种有机膨润土对水体中苯酚吸附的动力学行为,可见双十八烷基二甲基氯化铵改性膨润土(Bt/DHAC)的吸附活化能E较小,这使得吸附速率常数k1和平衡吸附量Г^e较大,达平衡时间t^e较小,说明利用Bt/DHAC更有利于对水体中苯酚的吸附,随着温度升高,单十八烷基三甲基氯化铵改性膨润土(Bt/SHAC)对苯酚的吸附动力学行为得到改善。  相似文献   

16.
通过对小麦秸秆生物炭(BC)进行碱和磁复合改性得到改性小麦秸秆生物炭(FKC),在SEM-EDS、 BET、 FT-IR、 XRD和VSM等表征的基础上,研究了FKC对水中Cd~(2+)的吸附特性及温度、pH值和投加量等对吸附特性的影响,探讨了碱和磁复合改性提高小麦秸秆生物炭吸附Cd~(2+)性能的机制.结果表明,与BC相比,KFC结构疏松多孔,表面积增加了19.11倍,O—H、■等芳香族和含氧官能团数量增多,并且出现新的官能团Fe—O. FKC具有磁性,其磁化强度为8.43 emu·g~(-1),能够回收重复使用. FKC对Cd~(2+)的吸附更符合准二级动力学和Langmuir等温吸附模型,表明其主要以化学吸附为主,FKC的理论最大平衡吸附量为23.44mg·g~(-1),是BC的1.47倍. FKC对Cd~(2+)的吸附是自发的吸热过程.在pH为2~8范围内,随pH的升高FKC的吸附能力逐渐提高.生物炭的投加量为10 g·L~(-1)较好.经3次"吸附-解吸-再吸附"循环后,FKC对Cd~(2+)的吸附量仍达到17.71mg·g~(-1),表明其有良好的重复利用性.该研究结果可为碱和磁复合改性小麦秸杆生物炭应用于Cd污染废水处理提供理论指导.  相似文献   

17.
不同锆负载量锆改性膨润土对水中磷酸盐吸附作用的对比   总被引:5,自引:4,他引:1  
通过实验对比考察了不同锆负载量的锆改性膨润土对水中磷酸盐的吸附作用.结果表明,锆改性膨润土对水中磷酸盐的吸附动力学过程符合准二级动力学模型,整个过程可以分为快速吸附阶段、缓慢吸附阶段和平衡吸附阶段,其中缓慢吸附阶段的吸附速率受膜扩散和颗粒内扩散所控制.锆改性膨润土对水中磷酸盐的吸附等温实验数据可以采用Langmuir、Freundlich、Sips和Dubinin-Radushkevich等温吸附模型进行拟合.实验条件下,磷酸盐吸附性能随pH增加而降低.溶液共存的Na~+、K~+和Ca~(2+)促进了锆改性膨润土对磷酸盐的吸附,并且Ca~(2+)的促进作用远远大于Na~+和K+,而溶液共存的HCO-3和SO2-4一定程度上抑制了锆改性膨润土对磷酸盐的吸附.锆改性膨润土吸附水中磷酸盐的主要机制为配位体交换并形成内层磷酸盐配合物.锆改性膨润土对水中磷酸盐的吸附能力随着锆负载量的增加而增加,而锆改性膨润土中单位质量ZrO_2对水中磷酸盐的吸附量则随着锆负载量的增加而降低.当ZrO_2负载量由3.61%增加到13.15%时锆改性膨润土的最大单层单位吸附量(以P计)显著地由3.83 mg·g~(-1)增加到9.03 mg·g~(-1),而继续增加ZrO_2负载量至19.63%时锆改性膨润土的最大单层单位吸附量则缓慢地提高到9.66 mg·g~(-1)(以P计).当ZrO_2负载量由3.61%逐渐增加到19.63%时,锆改性膨润土中单位质量ZrO_2的磷酸盐最大吸附量[m(P)/m(ZrO_2)]由106 mg·g~(-1)逐渐下降到49.2 mg·g~(-1).综合考虑吸附剂的经济成本和吸附容量,ZrO_2负载量为13.15%锆改性膨润土更为适合作为吸附剂去除水中磷酸盐.  相似文献   

18.
改性西瓜皮生物炭的制备及其对Pb(Ⅱ)的吸附特性   总被引:6,自引:5,他引:1  
以西瓜皮为原料,使用硫化铵[(NH4)2S]对其改性制备生物炭(MBC),用于对Pb(Ⅱ)进行吸附.探究了溶液pH、吸附时间、吸附剂添加量、Pb(Ⅱ)初始质量浓度和离子强度等因素对Pb(Ⅱ)吸附效果的影响.结果表明,饱和吸附时间为5 h,吸附反应的最佳pH为6,当Pb(Ⅱ)初始质量浓度1 000 mg·L-1,吸附剂添加量为2.0 g·L-1时,MBC对Pb(Ⅱ)的最大吸附量可达97.63 mg·g-1,明显高于未改性西瓜皮生物炭(BC)对Pb(Ⅱ)的吸附量.改性西瓜皮生物炭对Pb(Ⅱ)的吸附符合Langmuir等温吸附模型和拟二级动力学模型,证明吸附以单分子层化学吸附为主.使用氢氧化钠溶液对吸附Pb(Ⅱ)之后的MBC进行解吸来研究MBC的可重复使用性,在第六次循环中吸附量仍达64.74 mg·g-1.采用傅立叶转换红外光谱(FT-IR)、X射线光电子能谱(XPS)、氮吸附(BET)、扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)和Zeta电位...  相似文献   

19.
改性氧化石墨烯/壳聚糖功能材料对刚果红的吸附研究   总被引:1,自引:0,他引:1  
张丽  罗汉金  方伟  冯林强 《环境科学学报》2016,36(11):3977-3985
以氧化石墨烯(GO)和壳聚糖(CS)为前体物,以乙二胺四乙酸二钠(EDTA-2Na)为表面改性剂,制备了一种新型改性氧化石墨烯/壳聚糖功能材料(GEC),并将此材料作为吸附剂用于水中刚果红的吸附去除,探讨了时间、pH值、吸附剂投加量、温度及初始浓度对GEC吸附去除刚果红的影响.结果表明,GEC对水中刚果红具备良好的吸附能力,且在pH=2~12的范围内都具有较佳的吸附效果.GEC对刚果红的吸附动力学可以较好地用伪二级动力学模型进行描述,其吸附数据可应用Langmuir吸附等温模型进行拟合,其吸附过程是自发的吸热反应过程.根据Langmuir模型计算得到GEC室温条件下最大吸附量为175.43 mg·g~(-1).用2 mol·L~(-1)NaOH溶液在60℃水浴条件下对GEC进行脱附再生实验,在重复循环利用6次后,GEC对刚果红的吸附量仅下降了5.89%,刚果红的去除率仍保持在88%以上.以上结果表明,GEC适合作为一种有效的吸附剂去除水中刚果红.  相似文献   

20.
采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)的吸附.通过选择纳米级锐钛矿替代P25型二氧化钛作为反应原材料,成功将水热反应时间从72 h缩短至6 h.TEM,XRD和FT-IR等表征证实了新合成材料的为管状钛酸盐结构.TNTs对3种重金属离子的吸附动力学均符合准二级动力学方程,吸附等温线均符合Langmuir模型,且对Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)的理论最大吸附量分别高达525.58、214.41和69.65 mg·g~(-1).p H=5时,吸附动力学实验表明对于初始浓度分别为200、100和50 mg·L~(-1)的Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ),在TNTs上的平衡吸附量分别为513.04、212.46和66.35 mg·g~(-1),吸附性能优于传统吸附材料.合成的TNTs结构为三联的[Ti O6]八面体骨架和层间H+/Na+,其吸附机理为金属阳离子与TNTs层间Na+的离子交换.同时,共存离子对吸附的影响实验表明TNTs对重金属离子的吸附存在选择性,即使在较高的共存离子浓度下(10 mmol·L~(-1))TNTs对目标重金属离子的吸附性能依然优异.该研究提供了一种应用钛酸纳米材料高效去除水体重金属离子的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号