首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effective removal of heavy metals from aqueous wastes is among the most important issues for many industrialized countries. Removal of arsenic (As) from aqueous solutions was studied using Rhazia stricta biomass. The batch experiments are carried out to investigate the effect of the significant process parameters such as pH, contact time, solute concentration and adsorbent dose. The optimum pH required for maximum adsorption was found to be 5. The equilibrium data for the adsorption of As(V) on R. stricta are tested with various adsorption isotherm models such as Langmuir, Freundlich, Tempkin and Generalized equation. Results indicate the following order to fit the isotherm: Langmuir (1 and 2)?>?Tempkin?>?Generalized form?>?Freundlich. A comparison of two kinetic models showed that our data fitted well to the Elovich model.  相似文献   

2.
Behaviour of metals like Cu and Co was studied in nearly neutral (pH ?? 6.4) mine drainage seepage in a stream downgradient of a tailing dam at Chambishi site in the Copperbelt of Zambia. They are attenuated by precipitation of ferruginous ochres that incorporate significant quantities of metals. Using chemical analysis, X-ray powder diffraction and M?ssbauer spectroscopy, we show that the ochres are composed mostly of amorphous ferric hydroxide. Close to the seepage face, the total Fe content of ochres increases due to precipitation of amorphous ferric hydroxide, but total Fe in sediment decreases further downstream. The stream then flows through wetland (dambo) where the remaining fraction of metals is removed. During rainy periods, increased flow rate may result in re-suspension of ochres, increasing thus the mobility of metals. Major ions like sulphate are conservative at the start of the dry period (May), but gypsum may probably precipitate later at the end of the dry period. Sequential extractions of bulk sediments indicate that Mn behaves differently to Fe, with a trend of increasing Mn with distance from the tailing dam. There is much more Fe than Mn in residual (Aqua Regia) fraction, indicating that amorphous ferric hydroxides are transformed to more crystalline phases deeper in sediment. Environmental impact of mine drainage is relatively limited due to its neutral character.  相似文献   

3.
Dynamics of heavy metals such as Fe, Mn, Zn, Cr, Cu, Co, Ni, Pb, and Cd in surface water of Mahanadi River estuarine systems were studied taking 31 different stations and three different seasons. This study demonstrates that the elemental concentrations are extremely variable and most of them are higher than the World river average. Among the heavy metals, iron is present at highest concentration while cadmium is at the least. The spatial pattern of heavy metals suggests that their anthropogenic sources are possibly from two major fertilizer plants and municipal sewage from three major towns as well as agricultural runoff. The temporal variations for metals like Fe, Cu, and Pb exhibit higher values during the monsoon season, which are related to agricultural runoff. Concentrations of Ni, Pb, and Cd exceed the maximum permissible limits of surface water quality in some polluted stations and pose health risks. Dissolved heavy metals like Fe, Mn, Cr, Ni, and Pb exhibit a non-conservative behavior during estuarine mixing, while Zn, Cu, and Co distribution is conservative. Distribution of cadmium in the estuarine region indicates some mobilization which may be due to desorption. The enrichment ratio data suggest that various industrial wastes and municipal wastes contribute most of the dissolved metals in the Mahanadi River. The Mahanadi River transports 18.216 × 103 t of total heavy metals into the Bay of Bengal and the calculated rate of erosion in the basin is 128.645 kg km − 2 year − 1.  相似文献   

4.
Increased dissolved inorganic carbon (DIC) enhances the mobilization of metals and nutrients in soil solutions. Our objective was to investigate the mobilization of Al, Ca, Fe, and P in forest soils due to fluctuating DIC concentrations. Intact soil cores were taken from the O and B horizons at the Bear Brook Watershed in Maine (BBWM) to conduct soil column transport experiments. Solutions with DIC concentrations (~20–600 ppm) were introduced into the columns. DIC was reversibly sorbed and its migration was retarded by a factor of 1.2 to 2.1 compared to the conservative sodium bromide tracer, corresponding to a log K D?=???0.82 to ?0.07. Elevated DIC significantly enhanced the mobilization of all Al, Fe, Ca, and P. Particulate (>0.4 μm) Al and Fe were mobilized during chemical and flow transitions, such as increasing DIC and dissolved organic carbon (DOC), and resumption of flow after draining the columns. Calcium and P were primarily in dissolved forms. Mechanisms such as ion exchange (Al, Fe, Ca), ligand- and proton-promoted dissolution (Al and Fe), and ligand exchange (P) were the likely chemical mechanisms for the mobilization of these species. One column was packed with dried and sieved B-horizon soil. The effluent from this column had DOC, Al, and Fe concentrations considerably higher than those in the intact columns, suggesting that these species were mobilized from soil’s microporous structure that was otherwise not exposed to the advective flow. Calcium and P concentrations, however, were similar to those in the intact columns, suggesting that these elements were less occluded in soil particles.  相似文献   

5.
Solvent extraction is recommended as a suitable method for the removal of heavy metals from the waste waters of the chemical and electronic industries. Common extractants are organic compounds with molecular mass 200–450, almost insoluble in water (5–50 ppm), that selectively extract metals from aqueous solutions. On the basis of data from the literature, the extraction conditions are reviewed for the metals that cause problems in waste waters. The extraction conditions are understood to mean the type of extractant, anion present in the aqueous phase, and pH. As far as the data permit, the metals are ordered according to their extractability by given extractants. Special attention is paid to the main source of contamination of waste waters by heavy metals, namely electroplating plants. Two examples of the design of mixer-settler batteries are presented, which demonstrate continuous removal of heavy metals from the waste waters of electroplating plants to levels below the permissible limits. The first example illustrates removal of cadmium using triisooctylamine in a mixer-settler battery with the pertraction flow-arrangement; the second, removal of zinc and lead from rinse waters using the organophosphoric acid DEHPA (bis (2-ethylhexyl) phosphoric acid) in a battery with counter-current flow and reflux. The extraction equilibrium data were obtained in laboratory experiments using chloride solutions in concentrations close to those in the rinse waters of electroplating plants (erná and Volaufová, 1991).  相似文献   

6.
Low flow active sampling techniques collecting vapors and gases using thermally desorbable adsorbents are now feasible and desirable in many applications as they permit long integration times, the potential for miniaturized sampling configurations, and other advantages. At very low air flow rates (< 1 ml min(-1)), diffusive uptake on adsorbents in conventional sorbent tubes may equal or exceed the active (pumped) uptake rate, and even at low flow rates (1-4 ml min(-1)), diffusive uptake may significantly bias measurements. Thus, corrections to account for the diffusive flux or means to limit the diffusive uptake are needed in low flow applications. This paper presents (1) a theoretical analysis of the role of diffusive and advective uptake for several sampling geometries of tube-type samplers; (2) experimental confirmation using both laboratory and field studies; (3) estimates of the tortuosity and porosity of the glass wool packing used to retain the adsorbent, parameters needed to estimate diffusive fluxes in passive and active sampling; (4) a demonstration that orifice-equipped low flow active samplers can reduce diffusive uptake and improve precision, and (5) a model predicting the saturated adsorbent layer that helps to account for the gradual decline in uptake rates seen in passive sampling. Diffusive uptake will depend on the tube configuration and diffusion coefficient of the substance of interest, but for conventional sampling tubes (0.4-0.5 cm id, 1.5 cm air gap), sample flow rates should be maintained above 1 to 4 ml min(-1) to keep errors below 5%. Laboratory experiments showed close agreement with theoretical calculations, and the field study using 1 to 4 d sampling periods and 0.3 ml min(-1) flows demonstrated that the orifice-equipped samplers essentially eliminated diffusive uptake. No significant practical difficulties are encountered using orifices, e.g., pressure drop is minimal. Experimental estimates of tortuosity (0.79 +/- 0.02) and porosity (0.92 +/- 0.10) of the glass wool packing (0.3 cm length) represent relatively little resistance to diffusion; however, variation in the packing and adsorbent placement can degrade the precision achievable by passive samplers. Diffusion barriers, consisting most simply of an orifice, may be used to lower the diffusive uptake. A needle-type orifice permits flows below 0.1 ml min(-1) and is suitable for sampling periods as long as several weeks, and it provided greater precision than conventional open-ended sampling tubes (8% compared to 13%). Finally, the gradual decrease in diffusive fluxes often seen in passive sampling is attributed to additional resistance posed by a saturated adsorbent layer, in agreement with a simple model based on total VOCs and specific adsorptivity of the adsorbent.  相似文献   

7.
Indicators suggest that the amount of dissolved organic carbon (DOC) in natural waters may be increasing. Climate change has been proposed as a potential contributor to the trend, and under such a mechanism, the phenolic content of DOC may also be increasing. This study explores the assessment of the phenolic character of DOC using multidimensional fluorescence spectroscopy as a more convenient alternative to traditional wet chemistry methods. Parallel factor analysis (PARAFAC) is applied to fluorescence excitation emission matrices (EEMs) of humic samples to analyze inherent phenolic content. The PARAFAC results are correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method reveals that the phenolic content of five International Humic Substance Society (IHSS) samples varies from approximately 5.2 to 22 ppm Tannic Acid Equivalents (TAE). A four-component PARAFAC fit is applied to the EEMs of the IHSS sample dataset and it is determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C2, C3, and C4 have the highest probability of containing phenolic groups. The results show the potential for PARAFAC analysis of multidimensional fluorescence data for monitoring the phenolic content of DOC.  相似文献   

8.
This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.  相似文献   

9.
10.
The concentrations of three representative heavy metals(cadmium, chromium and lead) were measured by atomic absorptionspectroscopy in honeybees and in apiary's products (honey,pollen, propolis, and wax). Samples were collected from fivedifferent sampling points: four from areas surrounding the cityof Rome, and the fifth in the city center which receives intensevehicular traffic. All apiaries employed for this study werespecifically constructed without any metal part in order toavoid the risk of contamination of the assayed materials.Sample collection was conducted over a 3-month period (6samplings for honey and pollen, 3 sampling for propolis and wax,2 samplings for honeybees, all of which were collected in duplicate). Experimental data revealed, in general,statistically significant differences between the backgroundlevels of heavy metals recorded from the reference sites and thelevels measured in the site located in the center of the city ofRome.These results indicate that honeybees and, to a lesser extent,some of their products (pollen, propolis, wax, but not honey),can be considered representative bioindicators of environmentalpollution.  相似文献   

11.
The present research study investigates bioremediation potential of biostimulated microbial culture isolated from heavy metals waste disposal contaminated site located at Bhayander (east), Mumbai, India. The physicochemical and microbial characterization including heavy metal contaminants have been studied at waste disposal site. The microorganisms adapted at heavy metal-contaminated environment were isolated, cultured, and biostimulated in minimal salt medium under aerobic conditions in a designed and developed laboratory bioreactor. Heavy metals such as Fe, Cu, and Cd at a selected concentration of 25, 50, and 100?μg/ml were taken in bioreactor wherein biostimulated microbial culture was added for bioremediation of heavy metals under aerobic conditions. The remediation of heavy metals was studied at an interval of 24?h for a period of 21?days. The biostimulated microbial consortium has been found effective for remediation of Cd, Cu, and Fe at higher concentration, i.e., 100?mg/l up to 98.5%, 99.6%, and 100%, respectively. Fe being a micronutrient was remediated completely compared to Cu and Cd. During the bioaccumulation of heavy metals by microorganisms, environmental parameters such as pH, total alkalinity, electronic conductivity, biological oxygen demand, chemical oxygen demand, etc. were monitored and assessed. The pilot scale study would be applicable to remediate heavy metals from waste disposal contaminated site to clean up the environment.  相似文献   

12.
In this paper, copper ferrite nanoparticle (CFN) was synthesized, modified by cetyl trimethylammonium bromide, and characterized. Dye removal ability of the surface modified copper ferrite nanoparticle (SMCFN) from single system was investigated. The physical characteristics of SMCFN were studied using Fourier transform infrared, scanning electron microscopy, and X-ray diffraction. Acid Blue 92, Direct Green 6, Direct Red 23, and Direct Red 80 were used as model compounds. The effect of operational parameters (surfactant concentration, adsorbent dosage, dye concentration, and pH) on dye removal was evaluated. Response surface methodology (RSM) was used for the analysis of the dye removal data. The experimental checking in these optimal conditions confirms good agreements with RSM results. The results showed that the SMCFN being a magnetic adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions.  相似文献   

13.
14.
Lichens and cryoconite (rounded or granular, brownish-black debris occurring in holes on the glacier surface) from Ny-Ålesund were used for understanding the elemental deposition pattern in the area. Lichen samples collected from low-lying coastal region and cryoconite samples from high altitudinal glacier area were processed and analysed for elements such as aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) through inductively coupled plasma mass spectrometry. Results showed that heavy metals, Al and Fe, are present in high concentration in the cryoconite samples. Al was also present in high amounts in seven of the eight lichen samples studied. The general scheme of elements in the decreasing order of their concentrations for most of the cryoconite samples was Al?>?Fe?>?Mn?>?Zn?>?V?>?Pb?>?Cr?>?Ni?>?Cu?>?Co?>?As?>?Cs?>?Cd while that for the lichen samples was Al?>?Fe?>?Zn?>?Mn?>?Pb?>?Cu?>?Cs?>?Cr?>?Ni?>?V?>?Co?>?As?>?Cd. Similarity in trends in the two sample types confirms that the environment indeed contains these elements in that order of concentration which overtime got accumulated in the samples. Overall comparison showed most elements to be present in high concentrations in the cryoconite samples as compared to the lichen samples. Within the lichens, elemental accumulation data suggests that the low-lying site (L-2) from where Cladonia mediterranea sample was collected was the most polluted accumulating a number of elements at high concentrations. The probable reasons for such deposition patterns in the region could be natural (crustal contribution and sea salt spray) and anthropogenic (local and long-distance transmission of dust particles). In the future, this data can form a baseline for monitoring quantum of atmospheric heavy metal deposition in lichens and cryoconite of Svalbard, Arctic.  相似文献   

15.
16.
Studies on the use of tree bark as biomonitors for environmental pollutants are still very scarce. We evaluated the reliability of using Jacaranda mimosifolia, a common tree in Tshwane City of South Africa, as a suitable biomonitor of atmospheric trace metals. Bark samples were collected from ten different locations during two sampling periods. The concentrations of the metals were determined by inductively coupled plasma mass spectrometry. The concentrations of the metals were 33.2–1,795 μg/g (Pb), 21.4–210 μg/g (Cu), 68.4–490 μg/g (Zn), 30.6–2,916 μg/g (Cr), 0.12–1.34 μg/g (Cd), and 6.04–68.0 μg/g (V), respectively. The differences obtained for the results from different sites were significant (p?< 0.05). A significant difference was also observed between the two sampling periods. The trace metals concentrations suggested that automobile emissions are a major source of these metals. The study also confirms the suitability of J. mimosifolia as a biomonitor of atmospheric deposition of these metals.  相似文献   

17.
Nucella lapillus (L.) is a marine gastropod mollusc widely used as a bioindicator of TBT pollution in the North Atlantic coastlines. The species reproductive cycle and the male penis length seasonal/spatial variation were studied at a single site at Aveiro seashore (NW Portugal) between December 2005 and June 2007. The main objective of this work is to assess if the "Relative Penis Size Index" (RPSI)--an important imposex assessment index--varies seasonally and spatially in the same sampling site and how this can affect results obtained in imposex monitoring programmes. Animals able to reproduce were found every month but a seasonal pattern in N. lapillus reproductive cycle was evident. Female gametogenic maturation varied seasonally and a decrease in capsule gland volume and condition factor occurred in late summer/early autumn. The gametogenesis in males did not show a significant seasonal variation as in females but the condition factor, penis length, amount of sperm and prostate volume also diminished in late summer/early autumn. On the other hand, males that were close to egg capsules clusters had larger penises than those far away from clusters. The temporal and spatial male penis length variation introduces a bias on imposex assessment results when using RPSI and the magnitude of the error involved is evaluated for different TBT pollution levels scenarios. We consider that RPSI provides interesting and complementary information that should not be excluded from monitoring programmes, but temporal or spatial comparisons of imposex should be based on other more reliable imposex indices like the VDSI.  相似文献   

18.
Novel catalytic adsorbent (ruthenium on carbon) was employed for the treatment of pulp mill effluent in the presence of hydrogen peroxide. Mathematical model and optimization of the process regarding the most favorable COD (%), TOC (%) and color (%) removal rates was developed and performed with experimental design taking into account catalytic adsorption process kinetics. As the initial experimental design, 3(3-1) half-fractional factorial design (H-FFD) was accomplished at two levels to study the significance of the main effects, such as catalytic adsorbent (g l(-1)) and hydrogen peroxide (ppm) concentrations using the response surface methodology (RSM). Finally, a four factor-three coded level central composite design (CCD) with 28 runs was performed in order to fit a second-order polynomial model. Validation of the model was accomplished by different criteria including coefficient of determination and the corresponding analysis of variance. The achieved removal rates for TOC (up to 75%), COD (up to 73%) and color (up to 68%) were observed for the defined optimal conditions: 1g l(-1) of ruthenium on carbon, 7 ppm of hydrogen peroxide, pH = 4 and ambient temperature. The proposed method benefited significantly improved TOC, COD and color removal efficiency, regenerability and reusability of the catalytic adsorbent and unaltered initial pH of an effluent in comparison to traditional adsorption or oxidation processes.  相似文献   

19.
20.
Total sediment concentrations of Cd, Cu, Pb, Zn, As, and Hg obtained from the Ankobra, Sakumo II, and Volta estuaries in Ghana were used to generate contaminant probability density distributions and species sensitivity distributions in AQUARISK. Results of the tier 1 assessment showed Cu, Cd, Zn, and Pb were not of concern in the Ankobra as their measured values and the 99th percentile of the fitted distributions were lower than the SQG low-trigger values. Mercury (Hg) and As were however, identified to be of concern in this estuary. In the Sakumo II estuary, Cu, Cd, Pb, and Hg have been identified to be of concern because their concentrations are higher than the SQG low-trigger values. Hg has been identified as the only metal of concern in the Volta estuary. The total proportion of species likely to be affected by the combined concentration of Cd, Cu, and Zn measured from Ankobra, Sakumo II, and Volta were 14%, 16%, and 12%, respectively, according to the Bur III distributional analysis of the ecotoxicology data. The measured median sediment concentrations of As and Hg in the Ankobra estuary greatly exceeded the median sediment concentration targets to achieve a 5% or less exceedence of the SQG low value. Similarly, in the Sakumo II estuary, the measured median sediment concentrations of Cu, Pb, and Hg greatly exceeded the median sediment concentration targets to achieve a 5% or less exceedence of the SQG low. For the Volta estuary however, other metals except Hg fall below the target values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号