首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Colonies of the harvester ant, Pogonomyrmex barbatus, adjust the direction and length of foraging trails in response to the foraging behavior of their conspecific neighbors. In the absence of any interaction with its neighbor, a mature colony expands its foraging range at a rate of 0.85 ± 0.15 m per day. Exclusion experiments show that if a colony is prevented from using its foraging trails, the neighbors of that colony will enter its foraging range within 10 days. Exclusion experiments were performed with three age classes of colonies: young (1 year old), intermediate (3–4 years old), and old (5 years old or more). Colonies 3–4 years old are most likely to expand foraging ranges, and to retain newly-gained areas. To examine the relation of colony age (in years) and colony size (in numbers of workers), colonies of known age were excavated. Colonies increase greatly in size in years 3 and 4. Foraging area may be of greater current or prospective value for younger, smaller, quickly growing colonies than for older, larger ones of stable size. Correspondence to the second address  相似文献   

3.
P. Castro 《Marine Biology》1978,46(3):237-245
Trapezia ferruginea appears to depend entirely on its coral host (Pocillopora spp.) for shelter and food. Field and laboratory experiments have shown that the brightly colored crabs move between colonies at night. Analysis of movements in crabs randomly distributed among randomized Pocillopora damicornis colonies under laboratory conditions showed that after 6 days there was a significant increase in the number of heterosexual pairs (P<0.001) and a significant correlation between the number of crabs and the size of colonies (P=0.003), as well as between the size of crabs and the size of colonies (P=0.020) — conditions which are also observed in the field. No such correlations were obtained (P>0.05) in a similar experiment where very intense predation by carnivorous fishes was present. This host selection by adults appears to be elicited by the lack of a suitable partner and the inadequate size of their established territory in the colony.  相似文献   

4.
Testing the limits of social resilience in ant colonies   总被引:4,自引:0,他引:4  
Social resilience is the ability of Leptothorax ant colonies to re-assemble after dissociation, as caused, for example, by an emigration to a new nest site. Through social resilience individual workers re-adopt their spatial positions relative to one another and resume their tasks without any time being wasted in worker respecialisation. Social resilience can explain how an efficient division of labour can be maintained throughout the trials and tribulations of colony ontogeny including the, often substantial, period after the queen dies when the ability to conserve worker social relationships may be essential for efficiency to be maintained. The mechanism underlying social resilience is, therefore, expected to be robust even in the absence of many of the colony’s components, such as the queen, the brood and even a large proportion of the workers. Such losses are likely, given the ecology of this genus. Using sociotomy experiments, we found that social resilience can occur in the absence of the queen. Furthermore, the spatial component of social resilience can occur even when the queen, the brood, as well as a large proportion of the workers, are all absent simultaneously and hence many of the tasks are missing. We conclude, therefore, that social resilience is indeed robust. This does not, however, preclude worker flexibility in response to changes in task supply and demand. We propose a possible sorting mechanism based on worker mobility levels which might explain the robustness underlying this phenomenon. Received: 25 October 1999 / Accepted: 1 April 2000  相似文献   

5.
Colonies of the slave-making ant, Harpagoxenus sublaevis, may simultaneously contain workers of several Leptothorax slave species. We observed aggressive interactions among slave-makers, between slavemakers and slaves, and among slaves in 11 mixed colonies. The first two types of aggression appear to be correlated with reproductive competition for the production of males. Aggressive interactions among slaves, however, occurred mainly between slaves belonging to different species. In two colonies, in which one slave species clearly outnumbered the other, the majority attacked and finally expelled all nestmates belonging to the minority species. Our observations thus suggest that in Harpagoxenus colonies a homogeneous colony odor is not always achieved and that heterospecific slaves may occasionally be mistaken for alien ants. Gas chromatographic analyses of ants from mixed colonies similarly show that cuticular hydrocarbon profiles may differ strongly between heterospecific nestmate slaves.  相似文献   

6.
7.
Ant colonies are superorganisms with emergent traits that, for some species, reflect the combined activity of physically distinct worker castes. Although larger castes have high production costs, they are thought to save their colonies energy by efficiently performing specialized tasks. However, because workers are generally idle until sensing specific stimuli, their maintenance costs may be an important component of colony-level investment. I used metabolic scaling to examine the maintenance costs of dimorphic major and minor Pheidole castes across levels of colony organization (e.g., individual, group, and colony). Majors from three species had lower mass-specific metabolic rates than minors because of allometries at both individual and group levels and subsequently lived longer when starved. Thus, large major castes may offset their production costs in both their idle and active states. The slope scaling metabolic rate from incipient to reproductive colonies of Pheidole dentata (colony mass0.89) fell between the slopes for minor groups (group mass1.04) and major groups (∼group mass0.79) and appears to reflect developmental shifts in subunit mass and number and their offsetting effects on per capita energy demands. These results highlight how metabolic scaling may help visualize the energetic correlates of emergent behavior and unravel the mechanisms governing colony organization.  相似文献   

8.
How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.  相似文献   

9.
Summary Decrease in individual reproductive output with increasing numbers of reproductives is a general feature of social insect colonies. The previously described negative relationship between the fecundity of individual queens and number of resident queens in polygyne (multiple-queen) colonies of the fire ant Solenopsis invicta appears to result from mutual pheromonal inhibition. In an experimental test for the presence of fecundity reducing pheromones, corpses of functional (egg-laying) queens were found to effectively inhibit the fecundity of functional queens, suggesting that queen-produced pheromones suppress egg production in such queens. Evidence concerning a possible mechanism mediating this inhibition was also obtained. Treatment of queens with methoprene, a juvenile hormone (JH) analog, increased ovary development, suggesting that fecundity in functional queens may be mediated by the level of endogenous JH. These findings are consistent with the occurrence of mutual pheromonal inhibition among queens achieved by suppression of endogenous JH titers.  相似文献   

10.
Although colonies of the fire ant Solenopsis invicta are often founded by small groups of queens, all but one of the queens are soon eliminated due to worker attacks and queen fighting. The elimination of supernumerary queens provides an important context for tests of discrimination by the workers, since the outcome of these interactions strongly affects the workers' inclusive fitness. To test whether workers in newly founded colonies discriminate among nestmate queens, paired cofoundresses were narrowly separated by metal screens that prevented direct fighting, but through which the workers could easily pass. Soon after the first workers completed development, they often attacked one of the queens; these attacks were strongly associated with queen mortality. When one queen's brood was discarded, so that the adult workers were all the daughters of just one queen, the workers were significantly less likely to bite their mother than the unrelated queen; however, this tendency was comparatively weak. Queens kept temporarily at a higher temperature to increase their rate of investment in brood-rearing lost weight more rapidly than paired queens and were subsequently more likely to be attacked and killed by workers. Workers were more likely to bite queens that had been temporarily isolated than queens that remained close to brood and workers. When queens were not separated by screens, the presence of workers stimulated queen fights. These results show that workers discriminate strongly among equally familiar queens and that discrimination is based more on the queens' condition and recent social environment than on kinship. Received: 9 June 1998 / Accepted after revision: 10 October 1998  相似文献   

11.
The fate of queen foundress associations in ants varies across taxa: in some, lethal fighting results in survival of a single queen, while in others, queens coexist long term. One hypothesis for this difference is that selection favors fighting when group sizes are small and tolerance when groups are large. In an experiment with the ant Messor pergandei, we formed small, medium, and large groups with newly mated queens from field populations that have different mean group sizes and differ in whether multiple queens occur in older established colonies. We found that whether queens are eliminated by fighting depends upon region of origin and not group size: regardless of co-foundress number, queens from sites with single-queen adult field colonies displayed agonistic behaviors and their colonies reduced to a single queen, while queens from sites with multiple-queen colonies did not fight and co-foundresses coexisted long term. Worker aggression towards and elimination of queens were also correlated with region of origin. Where fighting occurred, queens were as likely to be killed by workers as by other queens. An aggressive display was the most common form of agonistic interaction among queens, while fighting was relatively rare. We hypothesize that queen displays evolved in response to worker attacks because they increase the probability that workers will eliminate competitor queens. Our results suggest that the evolutionary interests of workers, as well as queens, could be important in determining the evolution and maintenance of queen elimination in foundress associations.  相似文献   

12.
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h 2=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.  相似文献   

13.
Summary The contribution to maternity of workers and female sexuals over time by queens in six multiple-queen laboratory colonies of Solenopsis invicta was directly assessed by use of enzyme genetic markers. Queens contributed more equally to the worker pool than to the pool of sexuals in virtually all samples (Fig. 1), and individuals producing a substantial proportion of the workers often had low or no representation of their daughters in the pool of sexuals. Signficant disparity among queens in their relative production of sexual daughters was often evident, with dominance in production of sexuals by a given queen commonly occurring in association with a pronounced loss of weight followed shortly by her death. The results suggest that significant variability in short-as well as long-term reproductive success may occur among the distantly related queens associating in natural polygyne S. invicta nests. Variance in apportionment of maternity of sexuals did not appear to be simply related to varying levels of fecundity, suggesting that the common presumption that reproductive success can be equated with fecundity in polygyne social Hymenoptera may not be well founded. The observed variance also did not appear to result from a simple mechanism of kin recognition and discrimination by workers in the process of brood rearing. Rather, this variance may have largely resulted from either, 1) recognition of certain queens and their progeny coupled with preferential sexualization of these immatures by nurse workers, or, 2) queen biasing of eggs toward development as sexuals. The frequent association of weight loss and death of mother queens with high levels of sexual daughter production may be best explained by the latter mechanism.  相似文献   

14.
15.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

16.
Multiple-queen (polygyne) colonies of the introduced fire ant Solenopsis invicta present a paradox for kin selection theory. Egg-laying queens within these societies are, on average, unrelated to one another, and the numbers of queens per colony are high, so that workers appear to raise new sexuals that are no more closely related to them than are random individuals in the population. This paradox could be resolved if workers discriminate between related and unrelated nestmate sexuals in important fitness-related contexts. This study examines the possibility of such nepotism using methods that combine the following features: (1) multiple relevant behavioral assays, (2) colonies with an unmanipulated family structure, (3) multiple genetic markers with no known phenotypic effects, and (4) a statistical technique for distinguishing between nepotism and potentially confounding phenomena. We estimated relatedness between interactants in polygyne S. invicta colonies in two situations, workers tending egg-laying queens and workers feeding maturing winged queens. In neither case did we detect a significant positive value of relatedness that would implicate nepotism. We argue that the non-nepotistic strategies displayed by these ants reflect historical selection pressures experienced by native populations, in which nestmate queens are highly related to one another. The markedly different genetic structure in native populations may favor the operation of stronger higher-level selection that effectively opposes weaker individual-level selection for nepotistic interactions within nests. Received: 28 June 1996 / Accepted after revision: 6 October 1996  相似文献   

17.
Summary Inbreeding may have important consequences for the genetic structure of social insects and thus for sex ratios and the evolution of sociality and multiple queen (polygynous) colonies. The influence of kinship on mating preferences was investigated in a polygynous ant species, Iridomyrmex humilis, which has within-nest mating. When females were presented simultaneously with a brother that had been reared in the same colony until the pupal stage and an unrelated male produced in another colony, females mated preferentially with the unrelated male. The role of environmental colony-derived cues was tested in a second experiment where females were presented with two unrelated males, one of which had been reared in the same colony until the pupal stage (i.e., as in the previous experiment), while the other had been produced in another colony. In this experiment there was no preferential mating with familiar or unfamiliar males, suggesting that colony-derived cues might not be important in mating preferences. Inbreeding was shown to have no strong effect on the reproductive output of queens as measured by the number of worker and sexual pupae produced. The level of fluctuating asymmetry of workers produced by inbreeding queens was not significantly higher than that of non-inbreeding queens. Finally, colonies headed by inbreeding queens did not produce adult diploid males. Based on the current hypotheses of sex-determination the most plausible explanations for the absence of diploid-male-producing colonies are that (i) workers recognized and eliminated these males early in their development, and/or (ii) there are multiple sex-determining loci in this species. It is suggested that even if inbreeding effects on colony productivity are absent or low, incest avoidance mechanisms may have evolved and been maintained if inbreeding queens produce a higher proportion of unviable offspring. Correspondence to: L. Keller at the present address  相似文献   

18.
19.
A primary determinant of colony organization in temporally polyethic insect societies is inter-individual variation in behavior that is independent of worker age. We examined behavioral repertoires, behavioral correlates of adult development, and spatial distributions within the hive to explore the mechanisms that produce behavioral variation among middle-age honey bees (Apis mellifera). Individually labeled undertakers, guards, food storers, and wax workers exhibited a broad range of task-related behavior, but bees tagged as undertakers were more likely to subsequently remove a corpse from the hive and handle a corpse compared to other middle-aged bees. The activity level of undertakers was similar to other task groups, suggesting that undertaking specialists were neither hyper-active “elites” nor quiescent “reserves” that become active only when a dead bee stimulus is present. Undertakers also were more likely to remove debris and to remain in the lower region of the hive or near the entrance, even when not engaged in corpse removal; both preferences may promote colony efficiency by reducing inter-task travel times. Guards and undertakers were less likely to perform behavior normally associated with young bees compared to food storers and wax workers. Undertakers and guards also initiated foraging at earlier ages than the other task groups. These results suggest that undertakers and guards may be slightly developmentally advanced compared to food storers and wax workers. There also was evidence for lifetime differences in behavioral preferences which could not be explained by differences in adult development. Bees tagged as undertakers were more likely to subsequently remove a dead bee during their entire pre-foraging career compared to other task groups or members of their general age cohort. Differences in both the rate of adult development and individual behavioral preferences, both of which may be subject to genetic and environmental influences, are important determinants of inter-individual variation among honey bees of middle age. Received: 5 February 1997 / Accepted after revision: 27 May 1997  相似文献   

20.
Coordination of group actions in social organisms is often a self-organised process lacking central control. These collective behaviours are driven by mechanisms of positive feedback generated through information exchange. Understanding how different methods of communication generate positive feedback is an essential step in comprehending the functional mechanisms underlying complex systems. The Japanese small-colony ant, Myrmecina nipponica uses both pheromone trails and an apparent quorum response during consensus decisions over a new home. Both of these mechanisms have been shown to generate positive feedback and are effective means of selecting among mutually exclusive courses of action. In this study, I investigate how pheromone trails and quorum thresholds contribute to consensus decisions during house-hunting in this species through experimental manipulations of pheromone trails, colony size and environmental context. Results demonstrate that (1) providing colonies with pre-established pheromone trails increased the number of ants finding the new site and led to higher quorum thresholds and more rapid relocations, (2) experimentally halving colony size resulted in a proportional decrease in quorum thresholds and (3) colonies relocating long distances had higher quorums than those relocating short distances. Taken together, these data indicate that pheromone trails are important for recruitment and navigation during nest site selection, but that decision making is contingent on a quorum response. Such synergy between mechanisms of positive feedback may be a common means of optimising collective behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号