首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
根据文献中鱼腥藻细胞大分子的含量和组成情况,计算了细胞合成所需要的小分子单体和前体代谢物的量,得到代谢意义上的细胞生物合成计量关系,此计量关系模型,对鱼腥藻7120细胞在气升式光生物反应器中光自养和混合营养生长的对数生长阶段进行了代谢通量分析。结果表明,葡萄糖的利用影响细胞初级碳代谢的流动状况,混合营养生长过程比光自养生长过程磷酸戊糖途径氧化性分支的反应程度明显加强,随着培养的进行,葡萄糖被细胞用作碳源的比例可能减小,而用作能源的比例可能增大。  相似文献   

2.
Cu和Pb对赤潮异弯藻(Heterosigma akashiwo)生长的影响   总被引:1,自引:0,他引:1  
以添加了不同浓度的CuSO_4和Pb(NO_3)_2混合液的f/2培养基培养赤潮异弯藻,通过分析藻的最大生长密度、生长周期及比生长率这3个参数与Cu和Pb之间的相关关系,讨论2种重金属对赤潮异弯藻生长的影响以及2种重金属之间的互作效应。结果表明,Cu为0~0.02 mg·L~(-1)或Pb为0~0.32 mg·L~(-1)时,对赤潮异弯藻生长有促进作用;当Pb浓度不同的条件下,Cu浓度达到0.5~2.5 mg·L~(-1)时,赤潮异弯藻生长受到明显抑制,甚至无法生长;在Cu浓度不同的条件下,Pb在1~9 mg·L~(-1)范围内,随着浓度的增加,对赤潮异弯藻生长抑制作用逐步增强。在Cu浓度为0~2.5 mg·L~(-1)或Pb浓度为1~9 mg·L~(-1)及两者互作条件下,赤潮异弯藻最大生长密度和生长周期都受到显著影响(P0.01)。另外,Cu和Pb对赤潮异弯藻比生长率无显著影响,两者相互作用不明显。结合湛江海域已报道的这2种重金属实际含量,进一步评估了海区中重金属的潜在生态效应。  相似文献   

3.
为研究纳米氧化锌(ZnO NP)的毒性效应及其在细胞内外分布,以羊角月牙藻(Selenastrum capricornutum)为模型藻类,研究了不同浓度ZnO NP对羊角月牙藻生长、叶绿素含量、可溶性蛋白含量、超氧化物岐化酶(SOD)及过氧化物酶(POD)活性、丙二醛(MDA)含量及细胞内外ZnO NP含量变化。结果表明,ZnO NP对羊角月牙藻的生长抑制与处理浓度呈现正相关。在45 mg·L~(-1)ZnO NP暴露24 h后,其生长抑制率已达到95%。当ZnO NP处理藻细胞72 h后,羊角月牙藻细胞的叶绿素含量与处理浓度之间存在剂量-效应关系。低浓度(0.5 mg·L~(-1))ZnO NP处理后藻细胞可溶性蛋白质含量、SOD和POD活性明显下降,MDA含量升高,其产生的毒性效应高于高浓度组(5 mg·L~(-1)、45 mg·L~(-1))。细胞培养液溶出Zn2+量及藻细胞外吸附的ZnO NP量与ZnO NP处理浓度成正比,但是藻细胞内ZnO NP量与ZnO NP浓度没有相关性,胞内积累量基本维持不变。研究表明,各浓度组对藻细胞毒性的差异,不仅与细胞内Zn2+量有关,还与细胞外粘附的ZnO NP有关。  相似文献   

4.
铜绿微囊藻、斜生栅藻生长的磷营养动力学特征   总被引:12,自引:1,他引:12  
许海  杨林章  茅华  刘兆普 《生态环境》2006,15(5):921-924
在无磷培养基中添加不同质量浓度的磷,对经过磷饥饿的铜绿微囊藻Microcystisaeruginosa和斜生栅藻Scendesmusobliquus进行一次性培养,比较研究磷饥饿下两种藻对外源磷的生长反应,并应用Monod方程计算了两种藻的营养动力学参数(Umax、Ks)。结果表明,铜绿微囊藻现存量快速增加的磷质量浓度在0.020~0.200mg·L-1之间,比生长速率快速增长的磷质量浓度在0.00~0.200mg·L-1之间,斜生栅藻现存量快速增加的磷质量浓度在0.02~4.00mg·L-1之间,比生长速率快速增长的磷质量浓度在0.020~0.500mg·L-1之间。无论在现存量上还是在生长速率上,铜绿微囊藻适宜的磷质量浓度都比斜生栅藻的低。铜绿微囊藻的最大生长速率和半饱和常数分别为0.229/d、0.026mg·L-1;斜生栅藻的最大生长速率和半饱和常数分别为0.395/d、0.031mg·L-1。生长动力学参数表明:当磷缺乏的情况下,铜绿微囊藻容易形成优势,当磷丰富的情况下,斜生栅藻容易形成优势。  相似文献   

5.
氮、磷营养盐对东海原甲藻生长和硝酸还原酶活性的影响   总被引:3,自引:0,他引:3  
在实验室培养条件下,研究了不同氮、磷浓度及氮磷比结构对东海原甲藻生长和藻细胞硝酸还原酶活性(NRA)的影响.结果表明,各培养组藻细胞在接种后d 2即进入指数生长期,但受氮、磷浓度及结构的影响,各培养组的比生长率和藻密度存在一定的差异.同东海原甲藻的生长类似,藻细胞的NRA也受氮、磷浓度及结构的影响.研究进一步发现,东海原甲藻硝酸还原酶活性的最大值(NRAmax)都出现在指数生长期,与最大比生长率出现时间基本一致,且当N/P=16时,酶活力有最大值,表明东海原甲藻的硝酸还原酶活性存在一定阈值.此外,藻的生长速率与营养盐的同化速率并不一致,存存一定的滞后效应.  相似文献   

6.
芦苇化感组分对斜生栅藻Scenedesmus obliquus生长特性的影响   总被引:9,自引:1,他引:9  
水华或赤潮现象是备受关注的环境问题之一。利用植物化感作用抑制藻类生长作为一种新型的生物抑藻技术在近年来开始受到研究者的重视,并取得了一定的研究成果。文章研究了从芦苇PhragmitiscommunisTrin中分离得到的化感组分对斜生栅藻Scenedesmusobliquus生长特性的影响。在藻类的对数生长期向培养液中投加不同浓度的化感组分,分别测定并观察了培养期间受试藻种藻密度、藻细胞结构和群体形态的变化。结果表明,该化感组分在培养初期对斜生栅藻藻密度的增长具有明显的抑制作用,半效应质量浓度(EC50,4d)值为0.45mg·L-1,但在培养6d后,出现促进作用,且随投加浓度的增加而增强。斜生栅藻生长受到抑制期间,藻细胞形态变大,投加0.5mg·L-1化感组分时,藻细胞平均宽度是对照组的2倍。TEM观察观察结果表明藻细胞亚显微结构受到破坏。另外,EMA提高了斜生栅藻的沉降性和吸附性。  相似文献   

7.
不同氮浓度下三角褐指藻生长特性和化学组成   总被引:2,自引:0,他引:2  
蔡卓平  段舜山 《生态环境》2007,16(6):1633-1636
三角褐指藻是一类海洋单细胞硅藻,富含多不饱和脂肪酸,可以作为鱼、虾、贝等理想的饵料。而近年该藻曾多次在我国沿海海域发生暴发性增殖,给当地生态环境带来了一定的影响。为了探讨不同氮浓度对三角褐指藻生长特性和化学组成的影响,设置了低氮(44 μ mol.L-1)、中氮(880 μmol.L-1)和高氮(4 400 μmol.L-1)浓度三种处理,着重测定三角褐指藻的细胞密度、比生长率、生物量、可溶性糖、蛋白质含量和叶绿素含量等指标。结果表明,高氮浓度明显地促进了藻细胞的生长繁殖。高氮浓度下的藻细胞密度、比生长率和生物量分别比低氮浓度下的提高了 5.38 倍、0.81 倍和 2.86 倍。藻生长前期,高氮浓度和中氮浓度下的生长曲线相似,呈现一个"S"型的曲线。另外,高氮浓度下的藻细胞可溶性糖、蛋白质和叶绿素a含量分别是低氮浓度下的 2.5 倍、1.5 倍和 15 倍,说明高氮浓度促进了藻细胞化学组成的转化和积累。结果揭示,氮浓度可能是导致三角褐指藻近年在我国沿海海域发生暴发性增殖的重要因素。  相似文献   

8.
焦酚对共培养铜绿微囊藻和雨生红球藻影响的初步研究   总被引:1,自引:0,他引:1  
以单株藻为对象的纯培养抑藻测试体系被广泛用于化感抑藻活性物质筛选和作用机理研究,但自然水体中藻类常常相伴而生并相互作用,共存藻类对化感物质抑藻效果的影尚不清楚。为探讨藻类共存状态下对化感物质的响应,选择沉水植物穗花狐尾藻(Myriophyllum spicatum)的典型化感抑藻物质焦酚,以有害蓝藻铜绿微囊藻(Microcystis aeruginosa)和经济绿藻雨生红球藻(Haematococcuspluvialis)为受试藻,同时设置混合共培养体系和纯培养体系,比较焦酚对不同培养体系中两株藻的影响。结果显示,纯培养和共培养体系中,焦酚对铜绿微囊藻细胞增长的抑制率分别为96.82%和93.18%,而对雨生红球藻细胞增长的抑制率显著降低,分别为29.39%和45.40%。焦酚处理的纯培养和共培养体系中铜绿微囊藻胞外藻毒素质量浓度分别为3.23、2.00μg·L~(-1),雨生红球藻单个细胞内虾青素质量浓度分别为0.82、1.21 pg·cell-1。与纯培养相比,共培养体系中焦酚对铜绿微囊藻生长的抑制作用减弱,微囊藻毒素释放量显著降低(P0.05),而对雨生红球藻生长的抑制作用增强(P0.05),单个细胞内虾青素积累量最大(P0.05),表明两者共存减弱了焦酚对铜绿微囊藻的抑制效应,却增强了焦酚对雨生红球藻的影响。这些结果初步说明共存藻类会影响化感物质对目标藻株的抑制效应,在后续化感抑藻作用研究中,充分考虑藻类所处生物和非生物环境,将有助于深入揭示水生植物化感抑藻作用生态机制,明确化感作用和化感物质的生态学价值。  相似文献   

9.
采用室内模拟试验研究了不同粒径和不同浓度悬浮清洁疏浚物对2种常见海洋微藻小球藻(Chlorella sp.)和新月菱形藻(Nitzschia closterium)生长的影响.结果表明,在8d的试验周期里,与对照组相比,不同浓度清洁疏浚物对2种海洋微藻生长的影响均达极显著水平(P<0.01).在相同粒径范围内,悬浮清洁疏浚物质量浓度为1~7g·L-1时,其对微藻生长的抑制作用随浓度升高而增加.随悬浮清洁疏浚物粒径的减小,2种海洋微藻的细胞密度呈下降趋势,>88~ 125 μm粒径范围内生长的藻细胞受影响最小,0~16 μm粒径范围内生长的藻细胞受影响最大.悬浮清洁疏浚物对2种海洋微藻比生长速率的抑制作用明显,延缓了最大比生长速率出现的时间.2种海洋微藻对悬浮清洁疏浚物的敏感性存在差异,小球藻对悬浮清洁疏浚物的反应更加迅速.  相似文献   

10.
不同氮磷浓度对盘星藻生长的影响   总被引:2,自引:0,他引:2  
水体富营养化是当前一个严重的环境问题,而营养因子是引起水华的重要元素.文章通过实验室配水来模拟在不同氮、磷浓度下盘星藻(Pediaslrum sp)的生长情况.共设置了6个氮质量浓度梯度:0.1、0.5、0.9、1.3、1.7、2.1 mg·L-1对盘星藻的生长影响,在1.7mg·L-1的氮质量浓度下盘星藻的相对增长常数Kin=0.84.设置6个磷质量浓度梯度:0.01、0.03、0.07、0.10、0.14、0.19 mg·L-1对盘星藻的生长影响,在0.14 mg·L-1的磷质量浓度下盘星藻的最大比增长率为μmax=0.83.从水质指标变化看,pH和DO对细胞的生长状况有一定的预先指示作用;浊度与细胞生长状况呈正相关关系,在氮质量浓度影响下电导率与细胞生长状况呈正相关关系,在磷质量浓度影响下电导率与细胞生长状况呈负相关关系.  相似文献   

11.
Skeletonema costatum (Grev.) Cleve grown in batch culture at low light intensity under a 14 h light: 10 h dark photocycle showed exponential cell proliferation (1.1 doublings d-1) without significant phasing of the cell division by the light: dark cycle. The growth in carbon concentration was, however, restricted to the light period. The turbidity of the culture closely followed the carbon oattern, and was not affected by the increase in the cell number during the dark period. It was found that a trustule suspension had only approximately 1% of the turbidity of the corresponding intact algae. Culture turbidity was therefore regarded as a biomass parameter similar to the carbon concentration, without direct correlation to the timing of the cell division. The short-time variations in the turbidity of growing algal cultures were further studied in a cage culture turbidostat. The growth rate (based on turbidity) increased rapidly during the first half of the light period, decreased slightly towards the evening and was zero throughout the dark period. When transformed to continuous light, the growth of the culture continued to show damped oscillations for up to 1 wk, but with a period of 26.7 h instead of 24 h. The same circadian rhythm was observed in chlorophyll content, and is thus possibly a reflection of a freely oscillating internal biological clock. The cage culture turbidostat was found to be a suitable device for studies of the photocycle related regulation of biosynthesis in S. costatum.  相似文献   

12.
W. K. W. Li 《Marine Biology》1979,55(3):171-180
Prolonged exposure of Thalassiosira weissflogii (Grunow) to a sub-lethal concentration of cadmium in continuous culture resulted in the development of cellular characteristics allowing optimal growth in the presence of Cd. Examination of Cd-adapted and unadapted cells was made on steady-state populations growing at the same rate in order to eliminate any effects of differing growth rate on metabolism. Adaptation to Cd stress was manifested as increases in mean cell volume, dry weight, protein: DNA, protein: RNA, protein: carbohydrate, protein nitrogen: total cell nitrogen and carotenoid: chlorophyll a ratios. Subsequent exposure of the cells to Cd over a wide concentration range showed that cellular division rate, carbon photoassimilation and extracellular release of dissolved organic compounds were greatest near the Cd concentration to which the cells had previously been adapted. Enhanced cellular carbon photoassimilation in Cd-adapted cells correlated exactly with increased cellular protein content. The amount of dissolved organic excretion by Cd-adapted cells at the adaptation concentration was the same as that of unadapted cells at the same concentration. Since total carbon photoassimilation was greater in Cd-adapted cells at this concentration, the percentage of carbon excreted was less in these cells.  相似文献   

13.
The effect of light intensity and oxygen concentration on the growth of an estuarine diatom was investigated. Differences between rates of cell division and net carbon fixation were found to be dependent upon light intensity and oxygen concentration. Under conditions favoring large differences between cell division and net carbon fixation cultures of Thalassiosira pseudonana clone 3H depart from exponential and enter stationary phase at low cell concentrations. It is suggested that single cell algae may not be able to balance maintenance, growth, and division outside a fairly narrow range of environmental conditions.  相似文献   

14.
紫球藻的载体培养研究   总被引:1,自引:0,他引:1  
通过对紫球藻的载体培养进行的较详细研究,获得了适合于紫球藻培养的理想载体;采用载体培养条件的优化和流加营养物质、通气培养以及半连续培养等培养手段,显著提高了紫球藻细胞的质量浓度(ρmax =5.52 g L- 1) . 实验结果表明,利用载体法培养紫球藻不仅能有效地实现高密度培养,易于实现该微藻的连续或半连续培养,而且为细胞的采收带来了很大的方便  相似文献   

15.
Gonyaulax polyedra Stein grown in increasingly nutrientlimited batch culture undergoes the following changes (collectively termed aging): there is a decline in the intracellular concentrations of carbon, nitrogen and photosynthetic pigments; nitrate reductase activity decreases; rates of respiration and photosynthesis fall; and cell division virtually ceases (accompanied in bright light by a decrease in the volume of individual cells). The effect of light intensity on these aging events was tested by growing cells in either bright or dim light. The bright light (330 E m-2 s-1) was enough to saturate photosynthesis and the dim light (80 E m-2 s-1) was low enough to induce significant shade adaptation of photosynthesis without lowering growth rate. At both light intensities, a decline in carbon and nitrogen content preceded or accompanied all other monitored changes, and the sequence of aging events was similar. However the onset of the decline in intracellular nutrients and photosynthetic rate in low-light cells was delayed by a least one cell division time (i.e., to twice the cell density) in comparison to cells under bright light. At both light levels, pigment-protein complexes of the photosynthetic apparatus began to break down after intracellular carbon and nitrogen had been depleted to a critically low level. The beginning of the drop in pigmentation signalled the end of log-phase growth. It is suggested that the greater pigmentation of low-light cells may represent a larger nutrient supply than found in bright-light cells and could increase the survival time of nutrient-stressed populations.  相似文献   

16.
The aim of this study was to evaluate the in vitro toxicity of two multi-wall carbon nanotubes on four different cell lines: human alveolar epithelial (A549) cells, hepatocytes (Hep 3B cells), human embryonic kidney cells, and intestinal (P407 cells) cells. The adverse effects of carbon nanoparticles were analyzed after 24 h incubation with different cell lines using the trypan blue dye exclusion method. Incubation of carbon nanotubes with different cells produced a concentration-dependent inhibition of growth of the cells. The TC50 or IC50 values (toxic concentration 50, i.e., concentration of particles inducing 50% cell mortality) of two nanoparticles were (1) found to be in the range 23.5–30.5 µg mL?1, and (2) less than that of quartz (known toxic agent, 28.8–66.9 µg mL?1), indicating the greater cytotoxic effect of carbon nanoparticles than quartz particles.  相似文献   

17.
The biochemical composition of juvenile blue crabs, Callinectes sapidus, exposed to sublethal concentrations of the water-soluble fraction of South Louisiana crude oil (0 to 2 504 ppb) for 21 d were examined. Although growth took place in all crabs, tissue content varied inversely with exposure concentration while percentage tissue water varied directly with exposure concentration. Total protein, lipid and RNA content of crabs exposed to crude oil were significantly less than that of control crabs by Day 21. DNA content was not significantly different from that of control crabs, suggesting that the difference in tissue content was due to differences in cell volume and not cell number. There were no consistent differences in the concentration of the major biochemical components, indicating that the relative contribution of each of the components remained stable during the period of sublethal stress. Ratios of RNA:DNA and protein:DNA decreased in exposed crabs and were positively correlated with scope for growth and observed growth. The ratios may be useful as indirect indicators of physiological condition. Analysis of lipid classes indicated that structural lipids in stressed crabs were less affected than were lipids used for energy storage. The changes in biochemical composition suggest that the pattern of energy utilization was altered in crabs exposed to crude oil. Growth in size without comparable growth in tissue resulted in decreased tissue content. Available energy was used for growth, with little being stored in lipid reserves.  相似文献   

18.
Dark respiration rates were measured and carbon-excretion rates calculated for a nitrate-limited population of the marine chrysophyte Monochrysis lutheri grown in continuous culture at 20°C on a 12 h light-12 h dark cycle of illumination and over a series of 4 growth rates. A significant (P<0.05) positive correlation was found between dark respiration rate and growth rate. From a simple linear fit to the data, the respiration rate at maximum growth rate was estimated to be roughly 10.5% of the maximum gross-carbon-production rate, and more than three times higher than the extrapolated respiration rate at zero net-growth rate. Carbon-excretion rates showed no significant correlation with growth rate, and averaged less than 5% of the maximum gross-carbon-production rate. Mean cell nitrogen to carbon ratios were correlated in a virtually linear manner (r=0.994) with growth rate, and at a given growth rate were consistently higher than nitrogen to carbon ratios for the same species grown on continuous light. A comparison of carbon and nitrogen quotas as a function of growth rate for M. lutheri and other species suggests that the increase of cellular nitrogen at high growth rates under nitrate-limited growth conditions may be associated with the storage of cellular protein or amino acids rather than the presence of an inorganic nitrogen reservoir. The maximum nitrate uptake rate per cell during the day changed very little over the range of growth rates studied, and was comparable to the maximum uptake rate found for cells grown on continuous light. However, the cell nitrogen quota increased steadily with growth rate, causing a reduction in the maximum specific-uptake rate of nitrate during the day at high growth rates. The dark nitrate-uptake capacity of the population was clearly exceeded by the supply rate at the two higher growth rates, leading to a buildup of nitrate during the night which amounted to as much as 21% of the particulate nitrogen in the growth chamber by morning.Hawaii Institute of Marine Biology Contribution No. 478.  相似文献   

19.
Isochrysis galbana Parke, Strain CCAP 927/1, was grown in ammonium-limited batch culture under a 12 h light: 12 h dark illumination cycle. Samples were taken every 12 h over the 26 d period from lag phase through exponential into stationary phase (no net carbon fixation), with more frequent sampling at points of interest. Exponential cell-specific growth rate was 0.3 to 0.4d-1. Cell division occurred during the dark phase, while cell volume increase, ammonium uptake, and pigment synthesis occurred during the light. Stationary phase cells were small, and the lag phase was long (5 d) even though the C:N ratio had returned from 18 to 6.5 within 2 d, followed by synthesis of chlorophyll a. Net chlorophyll synthesis ceased within 4 d of exhaustion of the nitrogen source. The chlorophyll c: chlorophyll a ratio remained constant during increasing nitrogen deprivation. Biovolume and carotenoids correlated with carbon biomass. Levels of chlorophyll a correlated poorly with carbon fixation and carbon biomass once the nitrogen source had been exhausted. Except after the addition of ammonium to nitrogen-deprived cells (refeeding), the content of intracellular glutamine and the glutamine: glutamate ratio were low during the dark phase, rising to a plateau within the first 1 h of illumination. Refeeding of cells which had only just exhausted the extracellular nitrogen source resulted in a much smaller increase in glutamine than refeeding of nitrogen-starved (stationary-phase) cells. Nitrogen biomass correlated with the presence of an unidentified intracellular amine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号