首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 (RR-120) dye was investigated in detail by using Pseudomonas sp. SUK1. About 27%, 56% and 66% decolouration of 150 ppm RR-120 dye solution was observed by applying 0, 0.5 and 1 kGy doses, respectively, in the first step followed by microbial treatment for 24 h under static condition. Similarly, about 70%, 88% and 90% TOC removal was observed by applying 0, 0.5 and 1 kGy doses, respectively, in the first step followed by the microbial treatment for 96 h under static condition. The radiation induced fragmented products of RR-120 at doses of 0.5 and 1 kGy were investigated by FTIR and electrospray ionization-MS analysis. The induction of the enzymes viz. laccase, tyrosinase, azoreductase and NADH-2,6-dichlorophenol indophenol reductase was studied in the decolourised solution obtained after irradiating 150 ppm RR-120 dye solution with 0 and 1 kGy doses followed by the microbial treatment for 96 h under static condition. The enzymatic degradation products were studied by FTIR, HPLC and GC–MS. The toxicity study of the treated dye solution on plants revealed the degradation of RR-120 into non-toxic products by combined radiation-microbial treatment. This study explores a reliable and promising way to use industrially viable dose (?1 kGy) and microbial strain viz. Pseudomonas sp. SUK1 for permissible safe disposal of dye solutions from textile industries.  相似文献   

2.
The bioavailability and ecological risk of hydrophobic organic compounds (HOCs) in aquatic environments largely depends on their freely dissolved concentrations. In this work, the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, pyrene, and chrysene were determined for the Yellow River, Haihe River and Yongding River of China using polyethylene devices (PEDs). The results indicated that the order of ratios of freely to total dissolved concentrations of the three PAHs was phenanthrene (66.8 ± 20.1%) > pyrene (48.8 ± 26.4%) > chrysene (5.5 ± 3.3%) for the three rivers. The ratios were significantly negatively correlated with the log Kow values of the PAHs. In addition, the ratios were negatively correlated with the suspended sediment (SPS) and dissolved organic carbon (DOC) concentrations in the river water, and the characteristics of the SPS and DOC were also important factors. Simulation experiments showed that the ratio of freely to total dissolved concentrations of pyrene in the aqueous phase decreased with increasing SPS concentration; when the sediment concentration increased from 2 g L?1 to 10 g L?1, the ratio decreased from 67.6% to 38.4% for Yellow River sediment and decreased from 50.4% to 33.6% for Haihe River sediment. This was because with increasing SPS concentration, more and more DOC, small particles and colloids (<0.45 μm) would enter the aqueous phase. Because high SPS and DOC concentrations exist in many rivers, their effect on the freely dissolved concentrations of HOCs should be considered when conducting an ecological risk assessment.  相似文献   

3.
《Chemosphere》2013,90(11):1414-1418
Nano-MgO is a good bactericide but with strong alkalinity in water due to its rapid hydrolysis. To control its hydrolysis rate and keep its bactericidal properties, we synthesized nano-MgO microspheres using chitosan–alginate system in this study. The synthesized nano-MgO release-controlled microspheres (nMgO-RCM) were with 0.98–1.20 mm of particle sizes. Also, their embedding ratio and loading percentage was 63.52% and 12.27%, respectively. Based on the characterization results, nano-MgO was only observed on surface of the nMgO-RCM. Its release rate from the nMgO-RCM could be controlled by the chitosan–alginate system, and the observed rate constant (kobs) increased from 0.0289 h−1 to 0.0358 h−1 with the increment of the dosage from 10 mg L−1 to 80 mg L−1. Furthermore, the nMgO-RCM could maintain pH value lower than 8.5 and colony counts less than 20 CFU mL−1 for at least 120 h.  相似文献   

4.
The relationship between suspended particulate matter (SPM) and fungal spore was investigated in Seosan, a rural county along the west coast of Korea, in the spring of 2000. SPM concentrations in the air were 199.8 μg m−3 in the first Asian dust period (23–24 March), 249.4 μg m−3 in the second Asian dust period (7–9 April) and 98.9 μg m−3 in the non-Asian dust period (12–16 May), respectively. The majority of the total SPM were composed of coarse particles sized about 5 μm during the two Asian dust periods. Four molds genera grown from airborne fungal spores were identified in colonies grown from SPM samples taken during the Asian dust periods. All the genera found, Fusarium, Aspergillus, Penicillium and Basipetospora, are hyphomycetes in the division Deuteromycota. Morphologically, more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1 to 2.1 μm sized SPM than on the other sized samples gathered in the dust periods. On the other hand, no mold was observed on the sample of 1.1–2.1 μm sized SPM in the non-Asian dust period. From these results, it seems evident that several sorts of fine sized fungal spores were suspended in the atmospheric environment of this study area during Asian dust periods.  相似文献   

5.
Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (?5 μg L?1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84 ± 2.3%, 87 ± 4.1%, and 53 ± 1.2% for water, MSM and TSB, respectively), followed by charcoal (35 ± 2.2%, 32 ± 1.7%, and 12 ± 0.3%, respectively) and compost (1.3 ± 0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56 ± 11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost was fully desorbed and biodegraded.  相似文献   

6.
Benzo[a]pyrene (BaP) biodegradation by Stenotrophomonas maltophilia was studied under the influence of co-existed Cu(II) ions. About 45% degradation was achieved within 3 d when dealing with 1 mg L?1 BaP under initial natural pH at 30 °C; degradation reached 48% in 2 d at 35 °C. Efficacy of BaP biodegradation reached the highest point at pH 4. In the presence of 10 mg L?1 Cu(II) ions, the BaP removal ratio was 45% on 7th day, and maintained stable from 7 to 14 d at 30 °C under natural pH. The favorable temperature and pH for BaP removal was 25 °C and 6.0 respectively, when Cu(II) ions coexisted in the solutions. Experiments on cometabolism indicated that S. maltophilia performed best when sucrose was used as an additional carbon source. GC–MS analysis revealed that the five rings of BaP opened, producing compounds with one or two rings which were more bioavailable.  相似文献   

7.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

8.
In this work, the photocatalytic degradation of aqueous microcystin-LR was studied using TiO2 and ZnO as photocatalysts. The process was optimised and characterised at the bench scale (200 mL); both semiconductors exhibited a high degradation capacity at reaction times of 1 min (degradation greater than 95%). The transient species that were observed indicate that the degradation occurs via the multiple hydroxylation and elimination of the labile peptide residues of the molecule. When photocatalysis was applied in a continuous treatment system (20–50 L), the photocatalytic process exhibited a high degradation efficiency, which resulted in residual microcystin-LR concentrations that were less than 1 μg L?1 (C0 = 5 μg L?1).  相似文献   

9.
《Chemosphere》2013,93(2):269-273
Genotoxic effects of Bismuth (III) oxide nanoparticles (BONPs) were investigated on the root cells of Allium cepa by Allium and Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at five different concentrations (12.5, 25, 50, 75, and 100 ppm) for 4 h. Exposure of BONPs significantly increased mitotic index (MI) except 12.5 ppm, total chromosomal aberrations (CAs) in Allium test. While stickiness chromosome laggards, disturbed anaphase–telophase and anaphase bridges were observed in anaphase–telophase cells, pro-metaphase and c-metaphase in other cells. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These results indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.  相似文献   

10.
Significant accumulation of heavy metals in soils and flora exists around the abandoned Barbadalhos Pb mine in Central Portugal. Soil and plant samples [49 species] were collected from two line transects, LT 1 and LT 2, in the mineralized and non-mineralized area, respectively to gain a comprehensive picture of heavy metals in soils and flora to assess its potential for phytoremediation. Phytosociological inventories of the vegetation were made using the Braun-Blanquet cover-abundance scale. Metal concentrations in soil ranged from (in mg kg?1): 98–9330 [Pb], 110–517 [Zn], 7.1–50 [Co], 69–123 [Cr], 31–193 [Cu], 33 400–98 500 [Fe], 7.7–51 [Ni], 0.95–13 [Ag], 2.8–208 [As], and 71–2220 [Mn] along LT 1; and 24–93 [Pb], 30–162 [Zn], 3.7–34 [Co], 61–196 [Cr], 21–46 [Cu], 24 100–59 400 [Fe], 17–87 [Ni], 0.71–1.9 [Ag], 4.3–12 [As], and 44–1800 [Mn] along LT 2. Plant metal content ranged from (in mg kg?1): 1.11–548 [Pb], 7.06–1020 [Zn], 0.08–2.09 [Co], 0.09–2.03 [Cr], 2.63–38.5 [Cu], 10.4–4450 [Fe], 0.38–8.9 [Ni], and 0.03–1.9 [Ag] along LT 1; and 0.94–11.58 [Pb], 2.83–96.5 [Zn], 0.12–1.44 [Co], 0.21–1.49 [Cr], 1.61–22.7 [Cu], 4.6–2050 [Fe], 0.51–4.81 [Ni], and 0.02–0.31 [Ag] along LT 2. Plants with highest uptake of metals were: Cistus salvifolius (548 mg Pb kg?1), Digitalis purpurea (1017 mg Zn kg?1 and 4450 mg Fe kg?1). Mentha suavolens and Ruscus ulmifolius were seen to hyperaccumulate Ag (1.9 and 1 mg Ag kg?1, respectively). More metals and higher concentrations were traced in plants from LT 1, especially for Pb and Zn.  相似文献   

11.
Recent research has suggested that the adverse health effects caused by nanoparticles are associated with their surface area (SA) concentrations. In this study, SA was estimated in two ways using number and mass concentrations and compared with SA (SAmeas) measured using a diffusion charger (DC). Aerosol measurements were made twice: once starting in October 2002 and again starting in December 2002 in Mysore, India in residences that used kerosene or liquefied petroleum gas (LPG) for cooking. Mass, number, and SA concentrations and size distributions by number were measured in each residence. The first estimation method (SAPSD) used the size distribution by number to estimate SA. The second method (SAINV) used a simple inversion scheme that incorporated number and mass concentrations while assuming a lognormal size distribution with a known geometrical standard deviation. SAPSD was, on average, 2.4 times greater (range = 1.6–3.4) than SAmeas while SAINV was, on average, 6.0 times greater (range = 4.6–7.7) than SAmeas. The logarithms of SAPSD and SAINV were found to be statistically significant predictors of the logarithm of SAmeas. The study showed that particle number and mass concentration measurements can be used to estimate SA with a correction factor that ranges between 2 and 6.  相似文献   

12.
Size-resolved, 24-h aerosol samples were collected from June–July 2001 by means of an Andersen high-volume cascade impactor. Sampling was conducted in a central avenue (Patission) characterised by heavy traffic, 21 m above street level, in the Athens city centre. Samples were analysed by atomic absorption spectrometry and gas chromatography to determine the size distribution of nine metallic elements (Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) and n-alkanes (with carbon numbers in the range 18–35). The aerosol mass median diameter (MMD) was calculated by means of probit analysis on the cumulative mass concentration size distribution for each metals and n-alkane. The total n-alkane mass concentration (TNA) in total suspended particles (TSP) ranged from 72 to 1506 ng m−3 while the total metal concentration ranged from 5.6 to 28.6 μg m−3. The results showed that metals such as Cd, V and Ni are characterised by a MMD <1 μm, while the MMD for Pb and Mn are ∼1 μm. Such metals are generally considered to have anthropogenic emission sources. Other metals such as Al, Fe, Cu and Cr were found to have MMD=2–6 μm, which generally originate from soil dust or mechanical abrasion processes. The Carbon number profile of n-alkane compounds showed a strong anthropogenic source with only a minor biogenic influence. The concentration of most n-alkanes was characterised by high variability during the sampling period, in contrast to the concentration of most trace metals. Most n-alkanes had a unimodal size distribution with MMD=1–2 μm similar to those of some trace metals (Pb, Mn), which originate mostly from vehicle emissions. This is a strong indication that these species have a common source. Finally, gas–particle partitioning of n-alkanes was also examined for different particle sizes by means of the relationship between the partition constant Kp and saturation vapour pressure (pL0) as proposed by current sorption models.  相似文献   

13.
Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene  toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.  相似文献   

14.
Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 ± 2.68 mg g?1 of Hsing Shan incense and 43.7 ± 1.08 mg g?1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7–52.2% w/w of the identified particulate and 1078.3–1169.8 μg g?1 of incense, followed by inorganic salts at 30.4–31.8% w/w of identified particulate and 681.6–734.0 μg g?1 of incense, carboxylic acids at 12.0–17.1% w/w of the identified particulate and 268.6–392.8 μg g?1 of incense, and sugar alcohols at 4.44–5.38% w/w of the identified particulate and 102.3–120.6 μg g?1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses (Lao Shan 21.7 mg g?1 of PM and Hsing Shan 18.7 mg g?1). K+ and Cl? were the second most abundant components (K+ and Cl? were summed), accounting for 10.6 mg g?1 of Hsing Shan PM and 9.85 mg g?1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7–36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for incense burning. K+, levoglucosan, mannosan and xylitol are already reported in discriminator ratios for wood burning and it is proposed here that these can and should also apply to incense burning. The calculated discriminator ratios for two types of incense burning reported here are 0.229–0.288 for K/Levo, 12.5–13.5 for Levo/Manno, and 21.5–23.7 for the novel discriminator ratio Levo/Xylitol.  相似文献   

15.
The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm−2 from surfaces with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration at a frequency of 1 Hz at a power level of 14 W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71–88% of the spores released during a 30-min interval became airborne during the first 10 min.  相似文献   

16.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   

17.
A highly sensitive technique for the measurement of atmospheric HONO and HNO3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH4Cl/NH3 buffer solution (pH 8.5) for the measurement of HONO+HNO3. The scrubbing solution flow rate was 0.24 ml min−1 and the gas sampling flow rate was 2 l min−1. HNO3 in the NH4Cl/NH3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.  相似文献   

18.
《Chemosphere》2010,78(11):1558-1568
Polar bears (Ursus maritimus) feed mainly on ringed seal (Phoca hispida) and consume large quantities of blubber and consequently have one of the highest tissue concentrations of organohalogen contaminants (OHCs) worldwide. In East Greenland, studies of OHC time trends and organ system health effects, including reproductive, were conducted during 1990–2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk quotient (RQ) evaluation to more quantitatively evaluate the effect risk on reproduction (embryotoxicity and teratogenicity) based on the critical body residue (CBR) concept and using a physiologically-based pharmacokinetic (PBPK) model. We applied modelling approaches to PCBs, p,p′-DDE, dieldrin, oxychlordane, HCHs, HCB, PBDEs and PFOS in East Greenland polar bears based on known OHC pharmacokinetics and dynamics in laboratory rats (Rattus rattus). The results showed that subcutaneous adipose tissue concentrations of dieldrin (range: 79–1271 ng g−1 lw) and PCBs (range: 4128–53 923 ng g−1 lw) reported in bears in the year 1990 were in the range to elicit possible adverse health effects on reproduction in polar bears in East Greenland (all RQs  1). Similar results were found for PCBs (range: 1928–17 376 ng g−1 lw) and PFOS (range: 104–2840 ng g−1 ww) in the year 2000 and for dieldrin (range: 43–640 ng g−1 lw), PCBs (range: 3491–13 243 ng g−1 lw) and PFOS (range: 1332–6160 ng g−1 ww) in the year 2006. The concentrations of oxychlordane, DDTs, HCB and HCHs in polar bears resulted in RQs < 1 and thus appear less likely to be linked to reproductive effects. Furthermore, sumRQs above 1 suggested risk for OHC additive effects. Thus, previous suggestions of possible adverse health effects in polar bears correlated to OHC exposure are supported by the present study. This study also indicates that PBPK models may be a supportive tool in the evaluation of possible OHC-mediated health effects for Arctic wildlife.  相似文献   

19.
In September 2009, we investigated the residues, enantiomer fractions (EFs) and biological risks of organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), in three different depth ranges (0–5 cm, 5–10 cm and 10–15 cm) of sediments from 15 sites in Hangzhou, China. The concentration (ng g?1 dry weight) ranges of HCHs and DDTs in surface sediments were 0.74–5.8 and 0.76–17, respectively. The vertical distribution of mean OCP concentrations was in the order of 10–15 cm > 5–10 cm > 0–5 cm and implied that the residues of HCHs and DDTs gradually decreased after they were banned. The residues of OCPs in the study area mainly originated from the historical OCP use. The isomer ratios of <alpha>-HCH (α-HCH)/<gamma>-HCH (γ-HCH) (0.10–7.6) implied that HCH residues were derived not only from historical technical HCH use but also from additional use of lindane in this area. The isomer ratios of o,p′-DDT/p,p′-DDT (51% of samples were in the range of 0.3–1.3) suggested that both dicofol-type DDT and technical DDT applications may be present in most study areas. The (+)-enantiomers of α-HCH and o,p′-DDT were more prevalent than (?)-enantiomer in most samples with the fractions contain different enantiomers greater than 0.5. DDTs, especially p,p′-DDE, are the main OCP species of more ecotoxicological concern in Hangzhou.  相似文献   

20.
《Chemosphere》2013,90(11):1407-1413
This study presents carbon (δ13C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption–gas chromatography–isotope ratio mass spectrometry (TD–GC–irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ13C of benzene ranged between (i) −21.7 ± 0.2‰, (ii) −27.6 ± 1.6‰ and (iii) −16.3 ± 2.2‰, respectively and δD of benzene ranged between (i) −73 ± 13‰, (ii) −111 ± 10‰ and (iii) −70 ± 24‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ13C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号