首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

2.
A bimolecular rate constant, kOH+Benzyl alcohol, of (28 ± 7) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with benzyl alcohol, at (297 ± 3) K and 1 atm total pressure. Additionally, an upper limit of the bimolecular rate constant, kO3+Benzyl alcohol, of approximately 6 × 10?19 cm3 molecule?1 s?1 was determined by monitoring the decrease in benzyl alcohol concentration over time in an excess of ozone (O3). To more clearly define part of benzyl alcohol's indoor environment degradation mechanism, the products of the benzyl alcohol + OH were also investigated. The derivatizing agents O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) were used to positively identify benzaldehyde, glyoxal and 4-oxopentanal as benzyl alcohol/OH reaction products. The elucidation of other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible benzyl alcohol/OH reaction mechanisms based on previously published volatile organic compound/OH gas-phase reaction mechanisms.  相似文献   

3.
The rate constant for the reaction of diethyl sulfide (DES; C2H5SC2H5) with ozone was determined for the first time, which was (2.77±0.27)×10−19 cm3 molecule−1 s−1 under a room temperature of (289±1) K. Experiments were conducted under supposedly pseudo-first-order decay conditions, keeping [DES]0>50[O3]0, but having different combinations of [DES]0 and [O3]0. Cyclohexane was added into the reactor to eliminate the effect of OH radicals. The wall decay of ozone and the role of cyclohexane were also discussed in the present work.  相似文献   

4.
The main use of air quality forecast (AQF) models is to predict ozone (O3) exceedances of the primary O3 standard for informing the public of potential health concerns. This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations. These exposure indices include two concentration-based O3 indices, M7 and M12 (the seasonal means of daytime 7-h and 12-h O3 concentrations, respectively), and three cumulative exposure-based indices, SUM06 (the sum of all hourly O3 concentrations  0.06 ppm), W126 (hourly concentrations weighed by a sigmoidal weighting function), and AOT40 (O3 concentrations accumulated over a threshold of 40 ppb during daylight hours). During a three-month simulation (July–September 2005), the model over predicted the M7 and M12 values by 8–9 ppb, or a NMB value of 19% and a NME value of 21%. The model predicts a central belt of high O3 extending from Southern California to Middle Atlantic where the seasonal means, M7 and M12 (the seasonal means of daytime 7-h and 12-h O3 concentrations), are higher than 50 ppbv. In contrast, the model is less capable of reproducing the observed cumulative indices. For AOT40, SUM06 and W126, the NMB and NME values are two- to three-fold of that for M7, M12 or peak 8-h O3 concentrations. The AOT40 values range from 2 to 33 ppm h by the model and from 1 to 40 ppm h by the monitors. There is a significantly higher AOT40 value experienced in the United States in comparison to Europe. The domain-wide mean SUM06 value is 14.4 ppm h, which is about 30% higher than W126, and 40% higher than AOT40 calculated from the same 3-month hourly O3 data. This suggests that SUM06 and W126 represent a more stringent standard than AOT40 if either the SUM06 or the W126 was used as a secondary O3 standard. Although CMAQ considerably over predicts SUM06 and W126 values at the low end, the model under predicts the extreme high exposure values (>50 ppm h). Most of these extreme high values are found at inland California sites. Based on our analysis, further improvement of the model is needed to better capture cumulative exposure indices.  相似文献   

5.
The rate and mechanism for gas-phase destruction of hydroxyacetone, CH3C(O)CH2OH, by reaction with OH, Cl-atoms, and by photolysis have been determined. The first quantitative UV absorption spectrum of hydroxyacetone is reported over the wavelength range 235 to 340 nm; the spectrum is blue-shifted by about 15 nm relative to that of acetone and peaks at 266 nm, with a maximum absorption cross section of (6.7±0.6) ×10-20 cm2 molecule-1. Measurable absorption extends out to about 330 nm. The quantum yield for photolysis of hydroxyacetone in the region relevant to the troposphere (λ>290 nm) was found to be significantly less than unity. Rate coefficients for the reaction of hydroxyacetone with OH radicals and Cl-atoms were determined at 298 K using the relative rate technique. The rate coefficient for reaction with OH was found to be (3.0±0.7)×10-12 cm3 molecule-1 s-1, while the rate coefficient for reaction with Cl-atoms was found to be (5.6±0.7)×10-11 cm3 molecule-1 s-1. Both values agree well with previous studies. The data were used to determine the lifetime of hydroxyacetone in the troposphere. Reaction with OH is the major gas-phase destruction mechanism for this compound, limiting its lifetime to about 4 days, while photolysis is found to be only of minor importance.  相似文献   

6.
The influence of traffic-induced pollutants (e.g. CO, NO, NO2 and O3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO2 maxima only occurred in the morning. A high NO2/NO ratio was established during weather conditions with high global radiation intensities (K>800 W m−2), which may result in a high O3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km2), which were as high as 275 μg m−3 O3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m−3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine–Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The highest concentrations (CO=4.3 mg m−3, NO=368 μg m−3, 30-min mean values) coincide with the increase in the evening inversion. The maximum measured values for CO, NO and NO2 do not, however, exceed the German air quality standards in winter and summer.  相似文献   

7.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

8.
The ozonolysis of isobutene and isoprene was performed in a 570 ℓ static reactor at 295 K and 730 Torr synthetic air in the presence and absence of water vapour, with the reactant concentration ranges of 1–6 ppmv. Products were analysed by a combination of FTIR spectroscopy, GC-FID, and HPLC. For both alkenes, the yields of H2O2 and the primary carbonyl products (acetone for isobutene, methacrolein and methylvinyl ketone for isoprene) increased under humid conditions. In the isoprene ozonolysis, the H2O2 yields relative to the O3 conversion were, as determined from the initial rate of the formation, 1 and 9% for dry and humid conditions, respectively. The increase in its yield under the humid conditions was correlated with the sum of the increase in the yields of methacrolein and methylvinyl ketone (∼13%). This was explained by rapid decomposition of the transient α-hydroxy hydroperoxides formed in the reaction of H2O with the two stabilised C4 Criegee intermediates. Atmospheric relevance of the results is discussed.  相似文献   

9.
We use long-term, coincident O3 and temperature measurements at the regionally representative US Environmental Protection Agency Clean Air Status and Trends Network (CASTNet) over the eastern US from 1988 through 2009 to characterize the surface O3 response to year-to-year fluctuations in weather, for the purpose of evaluating global chemistry-climate models. We first produce a monthly climatology for each site over all available years, defined as the slope of the best-fit line (mO3-T) between monthly average values of maximum daily 8-hour average (MDA8) O3 and monthly average values of daily maximum surface temperature (Tmax). Applying two distinct statistical approaches to aggregate the site-specific measurements to the regional scale, we find that summer time mO3-T is 3–6 ppb K?1 (r = 0.5–0.8) over the Northeast, 3–4 ppb K?1 (r = 0.5–0.9) over the Great Lakes, and 3–6 ppb K?1 (r = 0.2–0.8) over the Mid-Atlantic. The Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model version 3 (AM3) global chemistry-climate model generally captures the seasonal variations in correlation coefficients and mO3-T despite biases in both monthly mean summertime MDA8 O3 (up to +10 to +30 ppb) and daily Tmax (up to +5 K) over the eastern US. During summer, GFDL AM3 reproduces mO3-T over the Northeast (mO3-T = 2–6 ppb K?1; r = 0.6–0.9), but underestimates mO3-T by 4 ppb K?1 over the Mid-Atlantic, in part due to excessively warm temperatures above which O3 production saturates in the model. Combining Tmax biases in GFDL AM3 with an observation-based mO3-T estimate of 3 ppb K?1implies that temperature biases could explain up to 5–15 ppb of the MDA8 O3 bias in August and September though correcting for excessively cool temperatures would worsen the O3 bias in June. We underscore the need for long-term, coincident measurements of air pollution and meteorological variables to develop process-level constraints for evaluating chemistry-climate models used to project air quality responses to climate change.  相似文献   

10.
Aromatic hydrocarbons are important constituents of vehicle exhaust and of non-methane volatile organic compounds in ambient air in urban areas. It has recently been proposed that dealkylation is a significant pathway for the OH radical-initiated reactions, leading to the formation of phenolic compounds and/or oxepins (Noda, J., Volkamer, R., Molina, M.J., 2009. Dealkylation of alkylbenzenes: a significant pathway in the toluene, o-, m-, and p-xylene + OH reaction. Journal of Physical Chemistry A 113, 9658–9666.). We have investigated the formation of cresols from the reactions of OH radicals with m-xylene and p-cymene, and obtain upper limits of <1% for formation of each cresol isomer from OH + m-xylene and <2% for formation of each cresol isomer from OH + p-cymene. In addition, we have measured the formation yield of 4-methylacetophenone (the major product formed subsequent to H-atom abstraction from the CH(CH3)2 group) in the OH + p-cymene reaction to be 14.8 ± 3.2%, and estimate that H-atom abstraction from the CH3 and CH(CH3)2 groups in p-cymene accounts for 20 ± 4% of the overall OH radical reaction. We also used a relative rate technique to measure the rate constant for the reaction of OH radicals with 4-methylacetophenone to be (4.50 ± 0.43) × 10?12 cm3 molecule?1 s?1 at 297 ± 2 K.  相似文献   

11.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

12.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

13.
Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene  toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.  相似文献   

14.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

15.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

16.
The behaviour of ozone (O3) and two important precursors, nitrogen dioxide (NO2) and formaldehyde (HCHO), over the East Mediterranean in spring from 1996 to 2002 is studied in order to characterise the buildup of tropospheric O3. The vertical distribution of O3 observed over Crete during the Photochemical Activity and Solar Ultraviolet Radiation (PAUR II) campaign in May 1999 has been used for validation of satellite-derived data. Retrievals of O3 columns from measurements of backscattered radiation by Global Ozone Monitoring Experiment (GOME) are compared with Total Ozone Mapping Spectrometer (TOMS), balloon, Systeme d’Analyse par Observation Zenithale (SAOZ) and LIDAR observations. The total O3 vertical columns vary between 270 and 402 DU and correlate well with changes in air circulation patterns. The total observed variability in tropospheric O3 is about 25 DU. Chemical box model calculations associate the GOME-observed NO2 and HCHO tropospheric columns with a potential of daily photochemical enhancement in the tropospheric O3 columns of about 0.8–1 DU over Crete and estimate the daily potential of regional photochemical buildup within upwind polluted air masses at about 2–8 DU. A Langrangian analysis attributes at most 10–20 DU of tropospheric O3 to stratosphere–troposphere exchange (STE). The remainder is attributed to long-range transport of O3 from industrial regions in Central Europe. From 1996 to 2002, in May no significant inter-annual variation in the tropospheric NO2 and HCHO columns over Crete has been observed by GOME suggesting no detectable increase in regionally produced tropospheric O3.  相似文献   

17.
Polybrominated diphenyl ether (PBDE) concentrations in sediment and fish from 12 principal rivers in Taiwan were investigated to determine their association with water quality parameters as well as the biota-sediment accumulation factor (BSAF) in fish with different living patterns. The highest PBDE concentration in sediment was found in the Bajhang River (261 ng g?1 dry weight (d.w.)) and the lowest in the Beinan River and the Da-an River (0.17 ng g?1 d.w.). The PBDE concentrations in fish samples ranged from 1.28 ng g?1 d.w. (Oreochromis niloticus niloticus) in the Yanshuei River to 33.7 ng g?1 d.w. (Varico rhinos barbatulus) in the Da-an River. We conclude that PBDEs contamination in sediment was significantly affected by NH3–N, pH, and DO. The BSAF results showed a parabolic trend from low- to high-brominated BDEs. Fish easily accumulated the congeners BDE-47, -100, -119, -126, and -154 from sediment. The BSAF decreased in the following order: PeBDE > HxBDE > TeBDE > other BDEs. Principle component analysis showed that demersal fish have different PBDE sources than do pelagic fish. We conclude that living and feeding habits are critical factors affecting PBDE accumulation in fish.  相似文献   

18.
The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m−3), aluminium (as Al2O3 from around 600 to 2200 ng m−3), titanium (from 200 to 700 ng m−3), magnesium (from 100 to 500 ng m−3), lead (from 17 to 379 ng m−3), barium (from 39 to 322 ng m−3), strontium (from 3 to 112 ng m−3), copper (from 12 to 71 ng m−3), and antimony (from 1 to 52 ng m−3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.  相似文献   

19.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

20.
The importance of municipal wastewater land application to nitric oxide production and transport in soil was studied through the formulation and conduct of a comprehensive laboratory testing protocol. Nitric oxide (NO) is a precursor in the formation of tropospheric ozone which can directly impact public health and the environment. It is the uncertainty in the NO budget, and its relation to O3, that motivates the need for measurements and modeling of NO flux from soils. Wastewater-amended soil is potentially one important component of that budget. NO emissions reported here were measured from: a well-characterized unamended soil, water-amended soil, and wastewater-amended soil in the laboratory in a dynamic test chamber. Laboratory results indicate that NO emissions from the selected sandy loam soil ranged from 0.3 to 0.4 ng N m-2 s-1 per cm2 of unamended soil, while water-amended soil emissions ranged from 0.4 to 0.7 ng N m-2 s-1 per cm2. NO flux from wastewater-amended soil ranged from 1.0 to 1.2 ng N m-2 s-1 per cm2 of applied soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号