首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
High volume air sampling in Bermuda, Sable Island (Nova Scotia) and along a cruise track from the Gulf of Mexico to northeast coast of the USA, was carried out to assess air concentrations, particle-gas partitioning and transport of polyfluorinated chemicals (PFCs) in this region. Samples were collected in the summer of 2007. Targeted compounds included the neutral PFCs: fluorotelomer alcohols (FTOHs), perfluoroalkyl sulfonamides (FOSAs) and perfluoroalkyl sulfonamido ethanols (FOSEs).Among the FTOHs, 8:2 FTOH was dominant in all samples. Sum of the concentration of FTOHs (gas+particle phase) were higher in Bermuda (mean, 34 pg m?3) compared to Sable Island (mean, 16 pg m?3). In cruise samples, sum of FTOHs were highly variable (mean, 81 pg m?3) reflecting contributions from land-based sources in the northeast USA with concentrations reaching as high as 156 pg m?3.Among the FOSAs and FOSEs, MeFOSE was dominant in all samples. In Bermuda, levels of MeFOSE were exceptionally high (mean, 62 pg m?3), exceeding the FTOHs. Sable Island samples also exhibited the dominance of MeFOSE but at a lower concentration (mean, 15 pg m?3). MeFOSE air concentrations (pg m?3) in cruise samples ranged from 1.6 to 73 and were not linked to land-based sources. In fact high concentrations of MeFOSE observed in Bermuda were associated with air masses that originated over the Atlantic Ocean.The partitioning to particles for 8:2 FTOH, 10:2 FTOH, MeFOSE and EtFOSE ranged from as high as 15 to 42% for cruise samples to 0.9 to 14% in Bermuda. This study provides key information for validating and developing partitioning and transport models for the PFCs.  相似文献   

2.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

3.
Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic perfluorinated compounds were determined in air samples collected at two sites in the vicinity of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido ethanols (FASE) in the gas- and particle-phase as well as a set of perfluorinated carboxylates (PFCA) and sulfonates (PFSA) in the particle-phase. This study presents the distribution of PFC in ambient air of the German North Sea and in the vicinity of Hamburg for the first time. Average total PFC concentrations in and around Hamburg (180 pg m?3) were higher than those observed in the German Bight (80 pg m?3). In the German Bight, minimum–maximum gas-phase concentrations of 17–82 pg m?3 for ΣFTOH, 2.6–10 pg m?3 for ΣFTA, 10–15 pg m?3 for ΣFASA, and 2–4.4 pg m?3 for ΣFASE were determined. In the vicinity of Hamburg, minimum–maximum gas-phase concentrations of 32–204 pg m?3 for ΣFTOH, 3–26 pg m?3 for ΣFTA, 3–18 pg m?3 for ΣFASA, and 2–15 pg m?3 for ΣFASE were detected. Concentrations of perfluorinated acids were in the range of 1–11 pg m?3. FTOH clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and thus medium to long range atmospheric transport was the governing parameter for the amount of PFC in ambient air. Southwesterly located source regions seemed to be responsible for elevated PFC concentrations, local sources appeared to be of minor importance.  相似文献   

4.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

5.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

6.
The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m−3), aluminium (as Al2O3 from around 600 to 2200 ng m−3), titanium (from 200 to 700 ng m−3), magnesium (from 100 to 500 ng m−3), lead (from 17 to 379 ng m−3), barium (from 39 to 322 ng m−3), strontium (from 3 to 112 ng m−3), copper (from 12 to 71 ng m−3), and antimony (from 1 to 52 ng m−3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.  相似文献   

7.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

8.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

9.
To better understand the current physical and chemical properties of East Asian aerosols, an intensive observation of atmospheric particles was conducted at Gosan site, Jeju Island, South Korea during 2005 spring. Total suspended particle (TSP) samples were collected using pre-combusted quartz filters and a high-volume air sampler with the time intervals ranging from 3 h to 48 h. The kinds and amount of various organic compounds were measured in the samples using gas chromatography–mass spectrometry. Among the 99 target compounds detected, saccharides (average, 130 ± 14 ng m?3), fatty acids (73 ± 7 ng m?3), alcohols (41 ± 4 ng m?3), n-alkanes (32 ± 3 ng m?3), and phthalates (21 ± 2 ng m?3) were found to be major compound classes with polyols/polyacids, lignin and resin products, PAHs, sterols and aromatic acids being minor. Compared to the previous results reported for 2001 late spring samples, no significant changes were found in the levels of their concentrations and compositions for 4 years, although the economy in East Asia, especially in China, has sharply expanded from 2001 to 2005. During the campaign at Gosan site, we encountered two distinct dust storm episodes with high TSP concentrations. The first dust event occurred on March 28, which was characterized by a predominance of secondary organic aerosols. The second event that occurred on the next day (March 29) was found to be characterized by primary organic aerosols associated with forest fires in Siberia/northeastern China. A significant variation in the molecular compositions, which was found within a day, suggests that the compositions of East Asian aerosols are heterogeneous due to multi-contributions from different source regions together with different pathways of long-range atmospheric transport of particles.  相似文献   

10.
A water surface sampler (WSS) was employed in combination with greased knife-edge surface deposition plates (KSSs) to measure the vapor phase deposition rates of PCBs to the sampler at an urban site, Chicago, IL. This sampler employed a water circulation system that continuously removed deposited PCBs. Total (gas+particle) and particulate PCB fluxes were collected with the WSS and KSSs, respectively. Gas phase PCB fluxes were then calculated by subtracting the KSS fluxes (particulate) from the WSS fluxes (gas+particle). The calculated gas phase PCB fluxes averaged 830±910 ng m−2d−1. This flux value is, in general, higher than the fluxes determined using simultaneously measured air–water concentrations in natural waters and is in the absorption direction. This difference is primarily because the PCBs were continuously removed from the WSS water keeping the water PCB concentration near zero.Concurrently, ambient air samples were collected using a modified high volume air sampler. The gas phase PCB concentrations ranged between 1.10 and 4.46 ng m−3 (average±SD, 2.29±1.28 ng m−3). The gas phase fluxes were divided by the simultaneously measured gas phase ambient concentrations to determine the overall gas phase mass transfer coefficients (MTCs) for PCBs. The average gas phase overall MTCs (Kg) for each homolog group ranged between 0.22 and 1.32 cm s−1 (0.54±0.47 cm s−1). The average MTC was in good agreement with those determined using similar techniques.  相似文献   

11.
A novel analytical method for atmospheric polycyclic aromatic hydrocarbons (PAHs) was developed based on laser induced fluorescence (LIF) of samples on quartz multi-channel polydimethylsiloxane traps. A tunable dye laser with a frequency doubling crystal provided the excitation radiation, and a double monochromator with a photomultiplier tube detected emitted fluorescence. The method allowed for the rapid (<5 min), cost effective analysis of samples. Those yielding interesting results could be further analysed by direct thermal desorption-gas chromatography–mass spectrometry (TD–GC–MS, with limits of detection of ~0.3 ng m?3), as photodegradation was minimal (<10% over 5 min irradiation). Small amounts of naphthalene photodegradation products identified by TD–GC–MS after >15 min irradiation, included phenol, benzyl alcohol and phthalic anhydride. Without any signal optimization, a LIF detection limit of ~1 μg m?3 was established for naphthalene using a diffusion tube (diffusion rate of 2 ng s?1) and 292 nm excitation.  相似文献   

12.
The tests of standard mixtures and four sets of atmospheric particulate samples showed that an acid-wash (AW) pretreatment of fluorocarbon-coated glass fiber filters prior to aerosol sampling enhanced the quantifiable organic compounds for more than 29% (or 66 ng m−3); in particular, 47–273 ng m−3 (21–366%) more water-soluble organic compounds (WSOCs) were measured. When the acid-pretreated filters were employed, up to nine more organic species were measured in the individual daily samples. Because the acid pretreatment reduced the metal contaminants in the glass fiber filters, using the AW filters for aerosol sampling allows higher extraction recoveries of organic compounds. Since the fingerprinting compounds were more accurately determined when the aerosol samples were collected on the AW filters, better assessment of emission sources and toxicity of air pollutants can be obtained.  相似文献   

13.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

14.
Filters collected from the Southeastern Aerosol Research and Characterization (SEARCH) air monitoring network were analyzed for the presence of 2-methyltetrols, namely 2-methylthreitol and 2-methylerythritol, two compounds that are products of the photooxidation of isoprene and have been detected in aerosol at a variety of sites around the globe. The 2-methytetrols were detected in ambient filter samples collected at the four SEARCH sites, Birmingham, AL, Centreville, AL, Pensacola, FL, and at Jefferson Street in Atlanta, GA, in late June 2004. Average atmospheric concentrations of 11.9 and 4.8 ng m−3 were measured for 2-methylerythritol and 2-methylthreitol, respectively, at the inland sampling sites, whereas average concentrations of 4.9 and 1.6 ng m−3 were measured at the coastal sampling location (Pensacola). On average, the aerosol loading from these two compounds accounts for approximately 0.42% and 0.21% of the organic mass collected on a given sampling day at the inland and coastal sites, respectively. The present data on these compounds, which are particulate-phase fingerprints of isoprene photooxidation, add to the growing body of ambient data on secondary organic aerosol from isoprene.  相似文献   

15.
White-nose syndrome (WNS) is a condition associated with white fungal growth on ears, wings, and nose of hibernating bats; this condition has recently resulted in high bat mortality in the northeastern United States. Nevertheless, the pathogenesis of morbidity and mortality are still unknown. Elevated exposure to toxic contaminants could be a contributing factor via the consequent immunosuppression and endocrine disruption. In this study, diseased little brown bats (Myotis lucifugus) were collected from several hibernacula in eastern New York State in 2008. Fat tissues of bats were analyzed for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), and organochlorine pesticides (OCPs; DDT, chlordanes, HCB, and HCH), and liver was analyzed for perfluorinated compounds (PFCs). A reference population of little brown bats, not affected by WNS, was also collected from a cave in Kentucky for the analysis of trace organic contaminants. Concentration of PCBs in fat tissues of bats from New York ranged from 1900 ng g?1 to 35 000 ng g?1, lipid wt, with the highest concentrations found in bats collected from caves in Albany County. High concentrations of PCBs were also found in bats from Kentucky (17 100–18 400 ng g?1, lipid wt). Total PBDE concentrations in fat tissues ranged from 520 ng g?1 to 10 900 ng g?1, lipid wt, in bats from New York and from 4300 ng g?1 to 13 000 ng g?1, lipid wt, in bats from Kentucky. High concentrations of DDT (26 900 ng g?1, lipid wt), chlordanes (6350 ng g?1, lipid wt), and HCB (260 ng g?1, lipid wt) were found in bats from New York. Concentrations of hexabromobiphenyl congener 153 (PBB 153) in bats from New York ranged from 8.6 ng g?1 to 12 4000 ng g?1, lipid wt. Concentrations of PFCs were on the order of a few tens to a few hundreds of nanograms per gram liver, on a wet weight basis. Overall, high concentrations of PCBs, PBDEs, DDT, and chlordanes were found in fat tissues of diseased bats from New York, although the concentrations in bats from non-diseased, reference population, from Kentucky were also high.  相似文献   

16.
The liquid chromatography–electrospray ionization-tandem mass spectrometer (LC–MS/MS) method coupled with an automated solid-phase extraction procedure has been developed to identify 22 psychiatric pharmaceuticals, including seven anxiolytic-sedative-hypnotics, six antidepressants, and nine anti-schizophrenia drugs, in wastewater samples from two psychiatric hospital wastewater treatment plants (P-WWTPs) and three municipal wastewater treatment plants (M-WWTPs) in Beijing, China. Analyte recoveries from spiking experiments in the WWTP influent and effluent at three concentrations ranged from 70% to 110%, excluding sulpiride, ziprasidone, and olanzapine. Method detection limits for five, eight, and nine analytes in the WWTP influent and effluent were 20–80, 1–16, and <1 ng L?1, respectively. High psychiatric pharmaceutical concentrations (e.g., ~942 ng L?1oxazepam, 5552–12,782 ng L?1 clozapine, 2762–9832 ng L?1sulpiride, and 2030–4967 ng L?1quetiapine) were frequently observed in P-WWTP influent compared to M-WWTPs. Although P-WWTPs typically had higher removal rates, significantly higher concentrations of the target compounds were observed in the P-WWTP secondary effluent than in the M-WWTP influent (e.g., ~752 ng L?1oxazepam, ~8183 ng L?1 clozapine, ~10,833 ng L?1sulpiride, and ~1168 ng L?1quetiapine). Thus, the discharge control of psychiatric pharmaceuticals from psychiatric hospitals requires improvement.  相似文献   

17.
Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m−3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August–September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100–200 ng N m−3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20 ng N m−3. Large deposition velocities (>2 cm s−1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols.  相似文献   

18.
The size distribution of metals in aerosols has been studied in 12 areas of the city of Seville. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into six-size ranges. Forty-one samples were collected in spring 1996. Each filter was extracted with a mixture of nitric and percloric acids. The acid solutions of the samples were analysed in six-particle fractions by inductively coupled plasma atomic emission spectrometry (ICP-AES). The impactor stage fractionation of particles shows a typical bimodal distributions, one corresponding to the fine mode below 1 μm (55%), and the other to the coarse mode around 10 μm (32%). With regard to the size distribution of metals, we concluded that potentially toxic metals, such as nickel, lead and cadmium are mainly accumulated in the smaller particles, with percentages of 72.6, 69.4 and 63.8%, respectively. Lead have a concentration of 63.7 ng m−3, more than copper and manganese (26.7 and 16.5 ng m−3) and above all more than nickel, cobalt and cadmium (1.97, 0.54 and 0.32 ng m−3).  相似文献   

19.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

20.
Higher plant waxes are the predominant natural components in the lipid fractions (> C15) of aerosols sampled over rural and oceanic regions. Hydrocarbon, fatty acid, ketone and fatty alcohol fractions of the lipids were characterized in terms of their contents of homologous compound series and specific biogenic molecular markers. Particulate samples from the rural western United States have been analyzed and compared with samples from urban Los Angeles and remote areas over the Atlantic Ocean. The samples from rural sites contained predominantly vascular plant wax and lesser amounts of higher plant sterols and resin residues. Urban samples and, to varying degrees, some rural samples contained primarily higher weight residues of petroleum products. The loadings of hydrocarbons derived from higher plant waxes ranged approximately from 10 to 160 ng m−3 of air (for fatty acids, 10–100 ng m−3 and for fatty alcohols, 10–200 ng m−3). Higher molecular weight lipids (i.e. plant epicuticular wax, terpenes, etc.) from flora comprise a significant component of the organic carbon in rural aerosols. Primary biogenic residues are major components of aerosols in all areas and they are important components in the global cycling of organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号