首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.  相似文献   

2.
Characteristics of toluene decomposition and formation of nitrogen oxide(NOx) by-products were investigated in a dielectric barrier discharge(DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide(Mn Ox), iron oxide(Fe Ox), cobalt oxide(Co Ox) and copper oxide(Cu O), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density(SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the Cu O catalyst showed the best performance in NOx suppression. The Mn Ox catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.  相似文献   

3.
A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.  相似文献   

4.
不同SAPO分子筛负载MnOx催化剂的低温NH3-SCR性能研究   总被引:1,自引:1,他引:0  
以磷酸硅铝分子筛SAPO-5、SAPO~(-1)1和SAPO-34为载体,采用乙醇分散法制备了用于低温氨选择性还原(NH_3-SCR)NO_x的分子筛负载MnO_x催化剂.活性测试结果显示,3种分子筛催化剂均展现出优良的NH_3-SCR活性,但三者在低温区间的SCR活性存在较明显差异,其SCR活性顺序如下:MnO_x/SAPO-34MnO_x/SAPO-5MnO_x/SAPO~(-1)1.借助XRD、N2吸附-脱附、XPS、H2-TPR、NH_3-TPD、NH_3FT-IR等技术对催化剂的表面活性物种及表面酸性等进行表征分析,结果表明,MnO_x主要以无定型状态分散于载体上,负载后载体的比表面积和孔体积均有所下降.XPS和H2-TPR分析证实,不同分子筛载体上MnO_x的表面浓度与氧化态明显不同.NH_3-TPD和NH_3FT-IR分析揭示了催化剂表面均存在Bronsted酸位和Lewis酸位,其中,Lewis酸性位对低温SCR反应起着关键作用.研究表明,催化剂的催化性能会因载体不同而存在差异,高Mn4+表面浓度和丰富的Lewis酸性位对催化剂在低温区间实现优良的催化活性尤为重要.  相似文献   

5.
Rod-like, hexagonal and fiber-like SBA-15 mesoporous silicas were synthesized to support MnO_x for toluene oxidation. This study showed that the morphology of the supports greatly influenced the catalytic activity in toluene oxidation. MnO_x supported on rod-like SBA-15(R-SBA-15) displayed the best catalytic activity and the conversion at 230°C reached more than 90%, which was higher than the other two catalysts. MnO_x species consisted of coexisting MnO_2 and Mn_2O_3 on the three kinds of SBA-15 samples. Large amounts of Mn_2O_3 species were formed on the surface and high oxygen mobility was obtained on MnO_x supported on R-SBA-15, according to the H_2 temperature programmed reduction(H_2-TPR)and X-ray photoelectron spectroscopy(XPS) results. The Mn/R-SBA-15 catalyst with greater amounts of Mn_2O_3 species possessed a large amount of surface lattice oxygen, which accelerated the catalytic reaction rate. Therefore, the surface lattice oxygen and high oxygen mobility were critical factors on the catalytic activity of the Mn/R-SBA-15 catalyst.  相似文献   

6.
In this paper, KMnO4 was used to pre-treat Co3Fe-layered double hydroxides (LDH) precursor to prepare MnO2 decorated Co3Fe1Ox catalyst. The toluene oxidation performance of the catalyst was investigated systematically. The optimized 0.1MnCF-LDO catalyst exhibited the best catalytic performance, and the temperatures of 50% and 90% toluene conversion (T50 and T90) were 218 and 243°C, respectively. The apparent activation energy (Ea) was 31.6 kJ/mol. The characterization results showed that the pre-redox reaction by KMnO4 could increase the specific surface area, Co3+ species amount and oxygen defect concentration of the catalyst, which are the main reason of the improved toluene catalytic activity. Besides, this method was also applied to enhance toluene oxidation of iron mesh based monolithic catalyst. The 0.1MnCF-LDO/Iron mesh (IM) catalyst showed a 90% toluene conversion at around 316°C which was much lower than that of without MnO2 addition (359°C). In addition, the water resistant of all the catalysts was studied as well, all the samples showed relatively good water resistance. The toluene conversion still remained to be over >80% even in the presence of 10 vol.% water vapor.  相似文献   

7.
O3 decomposition catalysts with excellent performance still need to be developed. In this study, Ag-modified manganese oxides (AgMnOx) were synthesized by a simple co-precipitation method. The effect of calcination temperature on the activity of MnOx and AgMnOx catalysts was investigated. The effect of the amount of Ag addition on the activity and structure of the catalysts was further studied by activity testing and characterization by a variety of techniques. The activity of 8%AgMnOx for ozone decomposition was significantly enhanced due to the formation of the Ag1.8Mn8O16 structure, indicating that this phase has excellent performance for ozone decomposition. The weight content of Ag1.8Mn8O16 in the 8%AgMnOx catalyst was only about 33.76%, which further indicates the excellent performance of the Ag1.8Mn8O16 phase for ozone decomposition. The H2 temperature programmed reduction (H2-TPR) results indicated that the reducibility of the catalysts increased due to the formation of the Ag1.8Mn8O16 structure. This study provides guidance for a follow-up study on Ag-modified manganese oxide catalysts for ozone decomposition.  相似文献   

8.
A series of WO3/CeO2 (WOx/CeO2) catalysts were synthesized by wet impregnation of ammonium metatungstate on a CeO2 support. The resulting solid acid catalysts were characterized by X-ray diffraction (XRD), UV-Vis spectroscopy (UV-Vis), Raman spectroscopy (Raman), in-situ Fourier transform infrared spectroscopy (in-situ FT-IR) of ammonia adsorption, NH3-TPD, H2 temperature-programmed reduction (H2-TPR), NH3/NO oxidation and activity measurements for NOx reduction by NH3 (NH3-SCR). The results show that polytungstate (WOx) species are the main species of tungsten oxide on the surface of ceria. The addition of tungsten oxide enhances the Brönsted acidity of ceria catalysts remarkably and decreases the amount of surface oxygen on ceria, with strong interaction between CeO2 and WOx. As a result, the N2 selectivity of NH3 oxidation and NH3-SCR at high temperatures (> 300℃) is enhanced. Therefore, a wide working temperature window in which NOx conversion exceeds 80% (NOx conversion > 80%) from 200 to 450℃, is achieved over 10 wt.% WOx/CeO2 catalyst. A tentative model of the NH3-SCR reaction route on WOx/CeO2 catalysts is presented.  相似文献   

9.
采用超声辅助浸渍法成功合成了高铁含量的Fe MOR-5%-UL催化剂,并且测试其催化还原NO性能.研究发现在超声辅助条件下浸渍制得的催化剂可以引入更高比例的离子交换位上的孤立的Fe~(3+),这些铁离子具有更强的NO还原活性,因此超声辅助浸渍法制备的催化剂催化性能显著高于传统的离子交换法和浸渍法.其中活性最高的FeMOR-5%-UL催化剂在添加SO_2等多种气氛时,催化活性下降不显著.并且在持续100 h的汽车尾气条件下进行的稳定性实验中,FeMOR-5%-UL的催化活性没有明显下降.FeMOR-5%-UL的优异的催化活性和稳定性非常具有应用前景和研究价值.  相似文献   

10.
非平衡等离子体联合技术降解甲苯气体   总被引:7,自引:1,他引:6  
竹涛  李坚  梁文俊  金毓峑 《环境科学学报》2008,28(11):2299-2304
采用了自制的纳米钛酸钡基介电材料作为催化剂,以电工陶瓷拉西环作为载体,利用介质阻挡放电产生的非平衡态等离子体对常压下流动态含甲苯的空气进行处理,研究了电场强度、流速、初始浓度及不同填料情况下甲苯的降解及臭氧产生情况,初步探讨了等离子体催化降解甲苯的机理,并进行了产物分析.实验结果表明,电场强度小于13kV·cm-1时,甲苯降解率和臭氧产生浓度随电场强度的提高而上升,随气速和初始浓度的增加而降低;不同填料下降解率及臭氧浓度由大到小排序为有催化剂填料、普通填料、无填料,有催化剂存在时(电场强度为14kV·cm-1,流速为0.3 m3·h-1,甲苯浓度为600 mg·L-1),甲苯降解率最高可达95%.当电场强度>13kV·cm-1时,臭氧浓度因受到过量的高能电子攻击而发生分解.表现为臭氧浓度随电场强度的继续增加而降低.因此,电场强度为13kV·cm-1时,产生的臭氧浓度最高.  相似文献   

11.
WLTC循环下汽油车氨排放影响因素分析   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究WLTC(worldwide light-duty test cycle,全球轻型汽车驾驶循环)循环下常规污染物和行驶工况对汽油车NH3排放的影响,选定一辆满足国Ⅴ排放标准、配备TWC(three way catalyst,三元催化器)尾气后处理装置的轻型汽油车,测定其在WLTC循环下CO2、CO、NOx和NH3的摩尔排放量.结果表明:CO、NOx与NH3排放的线性相关系数分别为0.626和0.321.NH3高排放的出现除了伴有CO的高排放外,还需车辆具有高速和持续的正向加速度.用配备TWC尾气后处理装置前、后NOx排放量的差值表示NOx的转化量发现,NOx的高转化量并不一定对应NH3的高排放量,在循环后期大量产生的NOx会抑制NH3的排放.由于VSP(vehicle specific power,比功率)能综合反映行驶工况,研究行驶工况对NH3排放的影响时主要分析VSP与NH3之间的关系,通过VSP聚类方法将VSP划分为不同区间,得出当VSP Bin(vehicle specific power bin,比功率区间)大于0时,基于CO2的NH3排放基本呈随VSP Bin增大而增加的规律,并且基于CO2的NH3排放量最大值对应的VSP Bin为持续正向加速工况.研究显示,常规污染物中CO和NOx对NH3的排放会产生不同程度的影响,加速度作为行驶工况的表征参数之一会直接或通过影响CO和NOx的排放间接影响NH3的生成.   相似文献   

12.
为了有效去除高含盐废水中的有机染料污染物,利用有序介孔硅材料作为模板剂,通过硬模板法制备了新型锰系氧化物(MnOx)介孔材料作为类Fenton催化剂.催化剂的结构表征结果表明,模板剂在锰前驱物溶液中浸渍和后续煅烧成型过程决定了氧化锰介孔材料的结构.浸渍-煅烧成型重复次数越多,MnOx介孔材料中孔道结构的有序度和氧化锰的结晶度越好.浸渍-煅烧成型次数过少,MnOx介孔材料中孔道呈现无序状态,比表面积较大但氧化锰结晶度不足;次数过多则形成更为致密的小孔径的孔道结构,从而使MnOx介孔材料的比表面积减小.由于对罗丹明B(RhB)良好的选择性吸附能力和较多的Mn3+/Mn4+对,具有有序规则孔道的氧化锰介孔材料具有优异的类Fenton催化活性,对高含盐废水中RhB的5 h降解去除率最高可达90%左右.  相似文献   

13.
Chlorobenzene removal was investigated in a non-thermal plasma reactor using CeO2/HZSM-5 catalysts. The performance of catalysts was evaluated in terms of removal and energy efficiency. The decomposition products of chlorobenzene were analyzed. The results show that CeO2/HZSM-5 exhibited a good catalytic activity, which resulted in enhancements of chlorobenzene removal, energy efficiency, and the formation of lower amounts of by-products. With regards to CO2 selectivity, the presence of catalysts favors the oxidation of by-products, leading to a higher CO2 selectivity. With respect to ozone, which is considered as an unavoidable by-product in air plasma reactors, a noticeable decrease in its concentration was observed in the presence of catalysts. Furthermore, the stability of the catalyst was investigated by analyzing the evolution of conversion in time. The experiment results indicated that CeO2/HZSM-5 catalysts have excellent stability: chlorobenzene conversion only decreased from 78% to 60% after 75 hr, which means that the CeO2/HZSM-5 suffered a slight deactivation. Some organic compounds and chlorinated intermediates were adsorbed or deposited on the catalysts surface as shown by the results of Fourier Transform Infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the catalyst before and after the reaction, revealing the cause of catalyst deactivation.  相似文献   

14.
用不同浓度的Cu、Ce和La离子交换Na Y分子筛,对比了不同改性条件下等离子体协同分解NO_x的性能.实验结果表明:Cu是NO_x催化分解的主要活性组分,对于8%Cu-Na Y催化剂,当放电电压为10 k V,放电功率为7.6 W时,NO_x转化率可达46.3%,反应产物中没有NO_2,只有11 ppm的N_2O.Ce的加入可以有效提高催化剂催化活性,对于5%Ce-8%Cu-NaY催化剂,当放电电压为7.8 kV,功率为3.6 W时,NO_x转化率可达67.3%.La的加入同样可以使催化剂活性上升,但不同La含量催化剂的NO_x转化率相差较小.  相似文献   

15.
催化燃烧是最有效的炭黑消除手段之一,催化剂是其中的核心,其活性的提高对催化效果优化及成本控制有重要影响.然而目前报道的大量炭黑燃烧催化剂活性测试是基于不同实验环境进行的,其结果之间缺乏比较意义.为了筛选活性优异的催化剂,并总结出催化剂活性与物理化学性质之间的关系,同时为催化过程中氧物种原位定量观测建立基础,根据易得、环...  相似文献   

16.
Me/SAPO-34 (Me = Mn, Ni, Co) series of catalysts were prepared by a wetness impregnation method and investigated for the selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR). Among them, Mn/SAPO-34 catalyst was found as the most promising candidate based on its superior low-temperature activity. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy images (TEM), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and desorption (TPR and TPD), and diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) of NH3/NOx adsorption. Mn/SAPO-34 is obviously different from Ni/SAPO-34 and Co/SAPO-34 in the active species state and distribution. Surface MnOx species which play an essential role in NO oxidation and NO2 adsorption, act as better active sites than nickel and cobalt mostly in the form of the aluminates and silicates.  相似文献   

17.
A series of MnM/palygorskite (PG) (M = La, W, Mo, Sb, Mg) catalysts was prepared by the wetness co-impregnation method for low-temperature selective catalytic reduction (SCR) of NO with NH3. Conversion efficiency followed the order Sb > Mo > La > W > Mg. A combination of various physico-chemical techniques was used to investigate the influence of Sb-modified Mn/PG catalysts. MnSb0.156/PG catalyst showed highest NO conversion at low temperatures in the presence of SO2 which reveals that addition of Sb oxides effectively enhances the SCR activity of catalysts. A SO2 step-wise study showed that MnSb0.156/PG catalyst displays higher durable resistance to SO2 than Mn/PG catalyst, where the sulfating of active phase is greatly inhibited after Sb doping. Scanning electron microscopy and X-ray diffraction results showed that Sb loading enhances the dispersion of Mn oxides on the carrier surface. According to the results of characterization analyses, it is suggested that the main reason for the deactivation of Mn/PG is the formation of manganese sulfates which cause the permanent deactivation of Mn-based catalysts. For Sb-doped Mn/PG catalyst, SOx ad-species formed were mainly combined with SbOx rather than MnOx. This preferential interaction between SbOx and SO2 effectively shields the MnOx as active species from being sulfated by SO2 resulting in the improvement of SO2 tolerance on Sb-added catalyst. Multiple information support that, owing to the addition of Sb, original formed MnOx crystallite has been completely transformed into highly dispersed amorphous phase accounting for higher SCR activity.  相似文献   

18.
Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3 >> NO2 > H2O > NO > O2 > CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.  相似文献   

19.
In recent years, near surface ozone pollution, has attracted more and more attention, which necessitates the development of high efficient and low cost catalysts. In this work, CuO/Cu2O heterojunctioned catalyst is fabricated by heating Cu2O at high temperature, and is adopted as ozone decomposition catalyst. The results show that after Cu2O is heated at 180°C conversion of ozone increases from 75.2% to 89.3% at mass space velocity 1,920,000 cm3/(g·hr) in dry air with 1000 ppmV ozone, which indicates that this heterojunction catalyst is one of the most efficient catalysts reported at present. Catalysts are characterized by electron paramagnetic resonance spectroscopy and ultraviolet photoelectron spectroscopy, which confirmed that the heterojunction promotes the electron transfer in the catalytic process and creates more defects and oxygen vacancies in the CuO/Cu2O interfaces. This procedure of manufacturing heterostructures would also be applicable to other metal oxide catalysts, and it is expected to be more widely applied to the synthesis of high-efficiency heterostructured catalysts in the future.  相似文献   

20.
甲醛(HCHO)是室内空气中的主要污染物之一,已被世界卫生组织确定为致癌和致畸形物质,对人体健康构成了极大威胁。常温催化技术在室温下即可将甲醛降解为无毒无害的CO_2和H2O,能耗低,具有较好的应用前景。二氧化锰(MnO_2)具有价格低廉、环境友好等优势,且晶型种类多,表现出优异的甲醛催化性能,具有较大的实际应用价值而被广泛研究。本文综述了MnO_2基催化剂,包括离子掺杂MnO_2、MnO_2固溶体和负载型MnO_2的甲醛催化活性及其制备方法,并探讨了其活性影响因素、常温催化反应机理,分析了其研究现状及发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号