首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Municipal solid waste disposal in Portugal   总被引:1,自引:0,他引:1  
In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.  相似文献   

2.
Dynamic respiration index (DRI) is an effective respirometric method to measure the biological stability of municipal solid waste (MSW). It allows testing MSW biological stability under standardized conditions and is now used as a routine analytical method. However, the method needs to be studied for precision parameters to ensure the quality of results generated.This work reports on a DRI validation study, detecting repeatability (r) and reproducibility limits (R). To perform the study, 4-6 Italian laboratories took part in an interlaboratory test for the validation of the DRI method on four different municipal solid wastes from different mechanical-biological treatment full-scale plants. Precision values (r and R) of DRI, expressed as relative standard deviation, were in the range of 3.6% and 15.5%, and were acceptable when compared with previous data obtained in another respirometric test. On the other hand, no regressions were found between r and R, and DRI, and as a consequence prediction of precision values was not possible a priori for different DRI levels, unless the same typology of waste was considered.  相似文献   

3.
Mass balances and life cycle inventory of home composting of organic waste   总被引:1,自引:0,他引:1  
A comprehensive experimental setup with six single-family home composting units was monitored during 1 year. The composting units were fed with 2.6-3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63-77% in the six composting units. The carbon dioxide (CO(2)) and methane (CH(4)) emissions made up 51-95% and 0.3-3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51-68% and the nitrous oxide (N(2)O) made up 2.8-6.3% of this loss. The NH(3) losses were very uncertain but small. The amount of leachate was 130 L Mg(-1) wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3-0.6% of the total loss of C and 1.3-3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens.  相似文献   

4.
Municipal solid waste (MSW) quantity and composition analysis is fundamental for the planning of municipal waste management services. The purpose of this paper is to report the results and experiences of sampling household waste at the source of generation in Gaborone, Botswana. The average generation rate, in kg capita(-1) day(-1), and percentages of various components of waste in Gaborone were determined using a statistically designed household sampling survey. The survey covered 47 households with different socio-economic characteristics over 21 days with 893 samples obtained. The results showed that the average waste generation rate for Gaborone was 0.33 kg capita(-1) day(-1). Contrary to common belief, the waste generation rate measured as in weight units was found not be directly related to household income. However, the packaging fractions of plastic and paper measured as volume had a direct relationship with household income. Across all income groups, the putrescible waste fraction constituted the highest proportion of the waste stream at approximately 68%. The main general conclusion is on the importance of practical considerations. As much as statistically designed sampling procedures provide a useful means of estimating the quantity and composition of household waste at source of generation, there are some practical issues that should be carefully considered during sampling to improve the accuracy and relevance of the results.  相似文献   

5.
This study estimated the kinetics of the mono- and co-combustion of sewage sludge pellets and combustible wastes such as municipal solid waste (MSW) and refuse-derived fuel (RDF). Sewage sludge was manufactured into pellets with a diameter of 8, 12, or 16 mm and a length of 30 mm. The RDF was composed of paper and plastics and was formed into pellets with a diameter of 8 mm and a length of 30 mm. MSW samples were synthesized using combustible wastes such as garbage, paper, plastics, and wood. The MSW was adjusted to have a moisture content of around 40% after shredding to under 10 mm. A laboratory-scale batch type stoker incinerator was used for the combustion and the gas composition of the flue gas was measured. The activation energy was calculated using the experimental results, and then the relation of the decomposition rate and reaction time was evaluated using the shrinking core model. The decomposition rate of the sludge pellets decreased as their diameter and moisture content increased, and the co-combustion of sludge pellets and combustible waste was affected by the amount of combustible waste. The individual combustion rates of the cylindrical sludge pellets or RDF were mainly controlled by the chemical reaction, but in the case of shredded MSW it was mostly influenced by gas diffusion. The rate for the co-combustion of sludge pellets and combustible wastes was mainly determined by the combustion rate of the combustible waste. The activation energy of the 8-mm-diameter sludge pellets was between 6.70 and 10.0 kcal/mol, according to the moisture content, but it was lower for MSW and RDF. In the case of MSW co-combustion, the reaction rate accelerated as the moisture content of the sludge pellets decreased, but it was markedly increased by the addition of RDF, regardless of the sludge moisture content.  相似文献   

6.
The <8 mm fraction of aged incinerator bottom ash from a commercial incinerator (energy from waste) plant has been collected at regular intervals, characterised and processed to form ceramic materials. Ashes were sieved, wet ball milled, dried, compacted and sintered at temperatures between 1080 and 1115 degrees C. Variations in the chemical composition and mineralogy of the milled ash, and the mineralogy, physical properties and leaching of sintered products have been assessed. Milling produces a raw material with consistent chemical and mineralogical composition with quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(AlSi)O(7)) and hematite (Fe(2)O(3)) being the major crystalline phases present. Different batches also milled to give consistent particle size distributions. Sintering milled incinerator bottom ash at 1110 degrees C produced ceramics with densities between 2.43 and 2.64 g/cm(-3) and major crystalline phases of wollastonite (CaSiO(3)) and diopside (CaMgSi(2)O(6)). The sintered ceramics had reduced acid neutralisation capacity compared to the as-received ash and exhibited reduced leaching of Ca, Mg, Na and K under all pH conditions. The leaching of heavy metals was also significantly reduced due to encapsulation and incorporation into glassy and crystalline phases, with Cu and Al showing greatly reduced leaching under alkali conditions.  相似文献   

7.
The objective of the work was to provide a method to predict CO2 and NH3 yields during composting of the biodegradable fraction of municipal solid wastes (MSW). The compostable portion of MSW was simulated using three principal biodegradable components, namely mixed paper wastes, yard wastes and food wastes. Twelve laboratory runs were carried out at thermophilic temperatures based on the principles of mixture experimental and full factorial designs. Seeded mixed paper (MXP), seeded yard waste (YW) and seeded food waste (FW), each composted individually, produced 150, 220 and 370 g CO2-C, and 2.0, 4.4 and 34 g NH3-N per dry kg of initial substrate, respectively. Several experimental runs were also carried out with different mixtures of these three substrates. The effect of seeding was insignificant during composting of food wastes and yard wastes, while seeding was necessary for composting of mixed paper. Polynomial equations were developed to predict CO2 and NH3 (in amounts of mass per dry kg of MSW) from mixtures of MSW. No interactions among components were found to be significant when predicting CO2 yields, while the interaction of food wastes and mixed paper was found to be significant when predicting NH3 yields.  相似文献   

8.
Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.  相似文献   

9.
Combustion studies of high moisture content waste in a fluidised bed   总被引:1,自引:0,他引:1  
The combustion of three high moisture content waste materials in a fluidised bed combustor has been investigated and a comparison with co-firing of these materials with coal in the same combustor has been made. Waste materials burnt were olive oil waste, municipal solid waste and potato, which is representative of vegetable waste. Mixtures of up to 20% mass concentration water in the waste were fed to the combustor. Above that value the moisture content was too high to sustain combustion without addition of coal. Measurements of CO, NOx, SO2 temperatures were made and the carbon combustion efficiency evaluated. Co-firing with coal resulted in markedly higher combustion efficiencies with an increase of approximately 10-80% when burning the simulated MSW. However, this was much lower than the value of 93% when coal was burnt on its own. It was also much lower than the value obtained, average 90%, when co-firing potato and olive oil waste with coal and there was little difference in the combustion efficiency between the two types of waste and with increasing moisture content. It was concluded that the high ash content of the simulated MSW 26%, compared with 5% in the other two waste materials resulted in slower burning and consequently the char particles were elutriated from the bed without being fully burnt. In term of gaseous emissions during co-combustion, CO emission is relatively insensitive to change in waste fraction. While emission of SO2 can be reduced as the waste fraction increases as a result of fuel-S dilution. But in terms of percent fuel-S converted, it is actually increased by increasing waste fraction. Emissions of NO and N2O increase slightly with MSW fraction.  相似文献   

10.
Biological stability was ascertained by using the Dynamic Respiration Index (DRI) on 144 samples of compost during the years 2003 and 2004, as a routine service for private subjects. Data obtained were collected and are critically discussed in this paper by using other parameters registered during tests, i.e., biomass temperature (T), specific airflow rate (Qs) and biomass analytical data (pH). Good linear correlations were obtained for DRI vs. T, DRI vs. Q(s) and DRI vs. pH, confirming expected results based on the theoretical discussion. Consequently, using the analytical method proposed in this paper means both T and Q can be used as additional parameters for measurement of the biological stability of compost. As a result, T values of 25.8 and 30.5 degrees C, and specific airflow rate of 8.6 and 13.4 m3 Mg(-1) VS h(-1) were found corresponding to 500 and 1000 mg O2 kgVS(-1) h(-1), which, respectively, indicate a high and a medium degree of biological stability.  相似文献   

11.
This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH(4) and CO(2)) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Río Frío Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L(-1) and a concentration of CO(2) of 90%. In this reactor, the fermentative population was predominant (10(5)-10(6)MPN mL(-1)). The acetogenic population was (10(5)MPN mL(-1)) and the sulphate-reducing population was (10(4)-10(5)MPN mL(-1)). In the methanogenic reactor (R2), levels of CH(4) (70%) were higher than CO(2) (25%), whereas the VFA values were lower than 4000 mg L(-1). Substrate competition between sulphate-reducing (10(4)-10(5)MPN mL(-1)) and methanogenic bacteria (10(5)MPN mL(-1)) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH(4)g(-1)VSS(-1)day(-1)) and hydrogenophilic (0.94 g COD-CH(4)g(-1)VSS(-1)day(-1)) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.  相似文献   

12.
Sustainable recycling of municipal solid waste in developing countries   总被引:3,自引:0,他引:3  
This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.  相似文献   

13.
In France, the interest in Mechanical Biological Treatment (MBT) prior to landfilling is actually growing. In the absence of acceptance criteria for the waste to be landfilled, an alternative to the intensive, high-technology MBT can only find its place in the French context if it shows substantial benefits from an environmental, economic or operational point of view. This paper presents an experiment of low-cost MBT of size reduced MSW without material splitting. The performance of an experimental, pilot-scale mechanical and biological treatment process has been studied on 37.5 Mg of raw municipal solid waste. The mechanical process has been kept simple with only coarse shredding and no material recovery. The biological treatment, which was a low-cost forced aeration process, was monitored for 25 weeks. The biogas production potential of the waste was reduced by 90% to 19 NL kgDM(-1). The initial AT4 index of 82.9 mg O2 gDM(-1) decreased to 16.0 mg O2 gDM(-1). After 25 weeks of aerobic treatment, the dry mass loss reached 37%, while the mass of waste going to landfill was reduced by 28%. The average performances of the process were explained by the biological process itself, which was not optimal, and also by the characteristics of the input waste. The high particle size of the treated waste and the high content of slowly biodegradable matter (such as paper and cardboard) may both be significant drawbacks for the biological stabilisation of waste.  相似文献   

14.
The residual fraction of mechanically-biologically treated municipal solid waste (MBT residual) was studied in the laboratory to evaluate its suitability and environmental compatibility as a support medium in methane (CH(4)) oxidative biocovers for the mitigation of greenhouse gas emissions from landfills. Two MBT residuals with 5 and 12 months total (aerobic) biological stabilisation times were used in the study. MBT residual appeared to be a favourable medium for CH(4) oxidation as indicated by its area-based CH(4) oxidation rates (12.2-82.3 g CH(4) m(-2) d(-1) at 2-25 degrees C; determined in CH(4)-sparged columns). The CH(4) oxidation potential (determined in batch assays) of the MBT residuals increased during the 124 d column experiment, from <1.6 to a maximum of 104 microg CH(4) g(dw)(-1) h(-1) (dw=dry weight) at 5 degrees C and 578 microg CH(4) g(dw)(-1) h(-1) at 23 degrees C. Nitrous oxide (N(2)O) production in MBT residual (<15 microg N(2)O kg(dw)(-1) d(-1) in the CH(4) oxidative columns) was at the lower end of the range of N(2)O emissions reported for landfills and non-landfill soils, and insignificant as a greenhouse gas source. Also, anaerobic gas production (25.6 l kg(dw)(-1) during 217 d) in batch assays was low, indicating biological stability of the MBT residual. The electrical conductivities (140-250 mS m(-1)), as well as the concentrations of zinc (3.0 mg l(-1)), copper (0.5 mg l(-1)), arsenic (0.3 mg l(-1)), nickel (0.1 mg l(-1)) and lead (0.1 mg l(-1)) in MBT residual eluates from a leaching test (EN-12457-4) with a liquid/solid (L/S) ratio of 10:1, suggest a potential for leachate pollutant emissions which should be considered in plans to utilise MBT residual. In conclusion, the laboratory experiments suggest that MBT residual can be utilised as a support medium for CH(4) oxidation, even at low temperatures, to mitigate greenhouse gas emissions from landfills.  相似文献   

15.
Municipal solid waste (MSW) generation and management in Cuba was studied with a view to integrating composting of the organic fractions of MSW into the system. Composting is already included as part of the environmental strategy of the country as an appropriate waste management solution. However, no programme for area-wide implementation yet exists. The evaluation of studies carried out by some Cuban and international organisations showed that organic matter comprises approximately 60-70% of the MSW, with households being the main source. If all organic waste fractions were considered, the theoretical amount of organic waste produced would be approximately 1 Mio. Mg/a, leading to the production of approximately 0.5 Mio. Mg/a of compost. Composting could, therefore, be a suitable solution for treating the organic waste fractions of the MSW. Composting would best be carried out in decentralised systems, since transportation is a problem in Cuba. Furthermore, low technology and low budget composting options should be considered due to the problematic local economic situation. The location for such decentralised composting units would optimally be located at urban agricultural farms, which can be found all over Cuba. These farms are a unique model for sustainable farming in the world, and have a high demand for organic fertiliser. In this paper, options for the collection and impurity-separation in urban areas are discussed, and a stepwise introduction of source-separation, starting with hotel and restaurant waste, is suggested. For rural areas, the implementation of home composting is recommended.  相似文献   

16.
Increasing population levels, rapid economic growth and rise in community living standard accelerates the generation rate of municipal solid waste (MSW) in Indian cities. Improper management of MSW causes hazards to inhabitants. The objectives of the study are to determine the quantitative and qualitative characteristics of MSW along with basic information and to create GIS maps for Allahabad city. The samples have been randomly collected from various locations and analyzed to determine the characteristics of MSW. A questionnaire survey has been carried out to collect data from inhabitants including MSW quantity, collection frequency, satisfaction level, etc. The Geographic Information System (GIS) has been used to analyze existing maps and data, to digitize the existing sanitary ward boundaries and to enter the data about the wards and disposal sites. The total quantity of MSW has been reported as 500 ton/day, and the average generation rate of MSW has been estimated at 0.39 kg/capita/day. The generated ArcGis maps give efficient information concerning static and dynamic parameters of the municipal solid waste management (MSWM) problem such as the generation rate of MSW in different wards, collection point locations, MSW transport means and their routes, and the number of disposal sites and their attributes.  相似文献   

17.
Coal ash from power stations has long been used successfully in the cement industry as binders in several Portland formulations. This is not the case for municipal solid waste (MSW) ash as chloride concentrations, ranging from 10 to 200 g kg(-1) dry weight in the bottom and fly ash, respectively, exceed the maximum allowable concentration in most cement mixtures. To reduce chloride content in MSW bottom ash, a laboratory investigation was carried out based on the exhaustive washing in tap water. The influence of operative parameters such as temperature, granulometric properties and solid/liquid ratio of extraction was evaluated. In addition to optimization of the mentioned operative parameters for full-scale application, the paper gives preliminary indications on mechanistic aspects of the washing operation.  相似文献   

18.
A beautiful and clean environment is the desire of every society. Malaysia is facing an uncontrolled increase in municipal solid waste (MSW) generation due to population growth, economic advancement, and industrialization, but the current, most common waste disposal practice of landfilling is not sustainable. The increasing standard of living also saps more energy from the power generation systems in which fossil fuels are the major source of fuel for the plants. Malaysia generates about 0.5–1.9 kg/capita/day of MSW; a total of about 25,000 tonnes/day of MSW is currently generated and is estimated to exceed 30,000 tonnes/day by 2020. Malaysian MSW is mainly composed of 45 % food waste, 24 % plastic, 7 % paper materials, 6 % metal, 4 % wood and 3 % glass, which are commingled, and is thus characterised by 52–66 % moisture content. Currently, 80–95 % of collected MSW is landfilled and 5 % is recycled, while composting and energy recovery are rarely practiced. This paper reviews the solid waste practice in Malaysia and looks into alternative management options for sustainability. Malaysia MSW represents recyclable power and energy potential if properly sorted. This study considered the practice of sorting at the source and the use of combustible MSW components as fuel to generate heat for a hybrid solar, flue gas, chimney power plant.  相似文献   

19.
Rapid economic growth, increasing population and change in living standards contribute to increasing the generation rate of municipal solid waste (MSW) in Denizli city, like other Turkish cities. The improper and poor MSW management system (old system) in Denizli caused environmental problems originating from the uncontrolled release of methane and leachate. In addition, the disposal of recyclable materials in unsanitary landfills is responsible for the consumption and destruction of natural sources. This paper presents a general overview of old and new MSW management practices in Denizli. Detailed data on MSW management practices including collection, transportation, disposal and recycling have been presented. The amount of solid waste generated in Denizli over the last decade has increased steadily over the years, from 108,500 tons in 1995 to 179,495 tons in 2006. The average MSW generation rate was found to be 1.23kg/day per capita. The major constituent of MSW in Denizli is food waste, but the percentage of recyclable waste has increased significantly recently. Except for metal wastes, the percentages of recyclable waste materials in Denizli are higher than in all neighborhood cities. The objective of this study is to compare the old and new MSW management systems in Denizli city. The MSW management system has been changed entirely last five years. A dumpsite was closed and a sanitary landfill with a composting facility was constructed. In addition, source separated collection has been carried out since 2002. The quantity of recyclable waste collected increased from 195 to 1549 tons. The amount of recyclable waste will continue to be increased by expanding the source separation collection system to all the districts of the city and preventing scavenging. Thus, revenue from recyclable waste ($7227 in 2006) is expected to increase. In addition, the capacity of the composting facility will be increased. Most importantly, information to increase public participation and awareness in municipal recovery programs has to be provided.  相似文献   

20.
A comprehensive laboratory investigation was performed on municipal solid waste (MSW) from a landfill located in northern California using a large-scale triaxial (TX) apparatus. An improved, standardized waste specimen preparation method was developed and used to prepare 27 large-scale TX specimens (d=300mm, h=600-630mm). The effects of waste composition, confining stress, unit weight, loading rate, and stress path on the drained stress-strain response of MSW were investigated. Waste composition has a significant effect on its stress-strain response. The commonly observed upward curvature of the stress-strain response of specimens composed of larger-sized waste materials results from the fibrous constituents (primarily paper, plastic and wood) reinforcing the waste matrix. This effect is greatest when the MSW specimen is sheared across the long axis of the fibrous particles. Due to this significant strain hardening effect and waste's in situ stress state, a limiting strain failure criterion of 5% axial strain from the K(o) field consolidation state is judged to be most appropriate. Results from this test program and data from the literature indicate that the TX compression secant friction angle of MSW varies from 34° to 44°, with 39° as a best estimate, at a confining stress of one atmosphere (assuming c=0). The friction angle decreases as confining stress increases. The friction angles measured in this testing program are representative of failure surfaces that are oriented at an angle to the predominant orientation of the long axis of the fibrous waste particles. These friction angles are higher than those obtained in direct shear tests where shearing typically occurs parallel to the orientation of the fibrous waste particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号