首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young RF  Orr EA  Goss GG  Fedorak PM 《Chemosphere》2007,68(3):518-527
Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.  相似文献   

2.
武朦  徐仲均 《环境工程学报》2014,8(9):3871-3874
采用在普通生物反应器上种植黑麦草的方法,研究了黑麦草根系强化微生物净化甲苯污染气体的作用,及甲苯入口浓度、填料深度、温度对反应器净化甲苯速率的影响。结果表明,在生物反应器相同的填料深度,细菌数量的水平分布为黑麦草根际区>过渡区>非根际,与相同位置的甲苯浓度分布呈负相关,说明黑麦草根系通过促进细菌的活性进而增加甲苯的降解。在相同的甲苯入口浓度下,甲苯的净化速率随着填料深度的增加而增加,在甲苯入口浓度不高于500 mg/m3条件下,相同的填料深度,反应器对甲苯的净化速率随着甲苯浓度的增加而增加。在5~35℃范围内,温度升高有助于提高微生物活性,促进微生物对甲苯的降解,且有黑麦草处理的甲苯净化速率大于同等条件下无黑麦草处理。  相似文献   

3.
Naphthenic acids are complex mixtures of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula CnH2n+zO2, where n is the carbon number and Z specifies a homologous family. These acids have a variety of commercial uses, including being used as wood preservatives. They are found in conventional and heavy oils, and in the oil sands of northeastern Alberta, Canada. Naphthenic acids are major contributors to the toxicity of tailings waters that result from the oil sands extraction process. Eight naphthenic acids preparations (four from commercial sources and four from the oil sands operations) were derivatized and analyzed by gas chromatography–mass spectrometry. The composition of each mixture was summarized as a three-dimensional plot of the abundance of specific ions (corresponding to naphthenic acids) versus carbon number (ranging from 5 to 33) and Z family (ranging from 0 to −12). The data in these plots were divided into three groups according to carbon number (group 1 contained carbon numbers 5–14, group 2 contained carbon numbers 15–21, and group 3 contained carbon numbers 22–33). A t-test, using arcsine-transformed data, was applied to compare corresponding groups in samples from various sources. Results of the statistical analyses showed differences between various commercial naphthenic acids preparations, and between naphthenic acids from different oil sands ores and tailings ponds. This statistical approach can be applied to data collected by other mass spectrometry methods.  相似文献   

4.
Biodegradation of haloacetic acids by bacterial enrichment cultures   总被引:5,自引:0,他引:5  
Haloacetic acids (HAAs) are toxic organic chemicals that are frequently detected in surface waters and in drinking water distribution systems. The aerobic biodegradation of HAAs was investigated in serum bottles containing a single HAA and inoculated with washed microorganisms obtained from enrichment cultures maintained on either monochloroacetic acid (MCAA) or trichloroacetic acid (TCAA) as the sole carbon and energy source. Biodegradation was observed for each of the HAAs tested at concentrations similar to those found in surface waters and in drinking water distribution systems. The MCAA culture was able to degrade both MCAA and monobromoacetic acid (MBAA) with pseudo-first order rate constants of 1.06 x 10(-2) and 1.13 x 10(-2) l(mg protein)(-1) d(-1), respectively, for concentrations ranging from 10(-5) to 2 mM. The pseudo-first order rate constant for TCAA degradation by the TCAA culture was 6.52 x 10(-3) l(mg protein)(-1) d(-1) for concentrations ranging from 5.33 x 10(-5) to 0.72 mM. The TCAA culture was also able to degrade MCAA with the rate accelerating as incubation time increased. Experiments with radiolabeled HAAs indicated that the 14C was primarily converted to 14CO2 with minor incorporation into cell biomass. The community structure of the enrichment cultures was analyzed by both cultivation-dependent and cultivation-independent approaches. Denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified 16S rRNA gene fragments showed that each of the two enrichment cultures had multiple bacterial populations, none of which corresponded to HAA-degrading bacteria cultivated on HAA-supplemented agar plates. This research indicates that biodegradation is a potential loss mechanism for HAAs in surface waters and in drinking water distribution systems.  相似文献   

5.
Abstract

Biodegradation of the fatty acylamino acids by Fusarium culmorum, measured in terms of the release of radioactive aspartate and lysine, occurred maximally at pH 6.5 and pH 7.0, respectively in 10 day cultures. Thirty‐six percent and twenty‐four percent of the total radioactivity recovered were in released aspartate and lysine, respectivley at 30°C. Twenty degrees (C) was the minimum temperature for biodegradation of these compounds by F. culmorum. Greater degradation was observed at 15°C and 30°C. The data suggest the activity of hydrolytic isoenzymes, with optima at different pH's and temperatures, operating in the biodegradation process.  相似文献   

6.
C E Kuo  S M Liu  C Liu 《Chemosphere》1999,39(9):1445-1458
In this study, we investigated the biodegradability of biphenyl and 5 congeners (one non-planar and four coplanar) of polychlorinated biphenyl (PCB). Biphenyl, the non-planar congener 2,3',4',5-tetrachlorobiphenyl (25-34 CB), and the four coplanar congeners 3,3',4,4'-tetrachlorobiphenyl (34-34 CB), 3,4,4',5-tetrachlorobiphenyl (345-4 CB), 3,3',4,4',5-pentachlorobiphenyl (345-34 CB), and 3,3',4,4',5,5'-hexachlorobiphenyl (345-345 CB) were amended at a concentration of 10 mg/L into anoxic sediment slurries collected from the estuaries of the Tansui River and the Erjen River. During 2 years' incubation under sulfidogenic conditions, biphenyl was persistent, while all other chlorinated congeners, except for 345-345 CB, were dechlorinated with or without a lag period in sediment slurries collected from both rivers. Dechlorination of coplanar and non-planar congeners began with para chlorine removal. All para chlorines from the mono-, di-, and trichlorobiphenyl groups could be removed by sediment slurries from both rivers. Microbial communities in sediment from the Erjen River additionally fostered meta-dechlorination activity, but only after removal of all the para chlorines. Addition of Tween 20 (0.05%, v/v) into sediment slurries from the Tansui River did not enhance dechlorination rates or extents, but the addition of toluene- or 3-chlorobenzoate-adapted sediments enhanced dechlorination of 34-34 CB and 345-4 CB.  相似文献   

7.
Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.  相似文献   

8.
R Margesin  F Schinner 《Chemosphere》1999,38(15):3463-3472
The effect of different concentrations of the anionic surfactant sodium dodecyl sulfate (SDS) on biodegradation of diesel oil was assessed during 32 days at 10 degrees C, under simulated environmental conditions, in liquid culture and in an alpine soil. Low SDS concentrations (50-100 mg l-1) significantly enhanced oil biodegradation by a psychrotrophic inoculum in liquid culture, whereas higher SDS concentrations (500-1000 mg l-1) inhibited hydrocarbon biodegradation. Oil biodegradation by the indigenous microorganisms in soil was inhibited at all SDS concentrations tested. The surfactant itself was rapidly biodegraded both in liquid culture and in soil.  相似文献   

9.
Ozonation of oil sands process water removes naphthenic acids and toxicity   总被引:1,自引:0,他引:1  
Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): <5% of the initial concentration in the filtered OSPW. Total organic carbon did not change with 130min of ozonation, whereas chemical oxygen demand decreased by approximately 50% and 5-d biochemical oxygen demand increased from an initial value of 2mgl(-1) to a final value of 15mgl(-1). GC-MS analysis showed that ozonation resulted in an overall decrease in the proportion of high molecular weight naphthenic acids (n> or = 22).  相似文献   

10.
Oil pollution from various sources, including exploration, production and transportation, is a growing global concern. The highest toxicity of hydrocarbon pollutants is associated with the water-soluble phase compounds, including naphthenic acids, a known component found in all hydrocarbon deposits. Recently, naphthenic acids (NAs) have shown estrogenic and anti-androgenic effects in vitro. For this reason we investigated the potential effects of two commercial mixtures of naphthenic acids on fish in vivo, using the three-spined stickleback (Gasterosteus aculeatus) as a model species.  相似文献   

11.
Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC50 towards Vibrio fischeri) after 2 h of treatment.  相似文献   

12.
This study provides the first evidence for the direct biodegradation of persistent organic matter extracted from the organic-rich polymetallic black shale ore Kupferschiefer, one of the most important sources of metals in the world. It was demonstrated that an enriched community of indigenous heterotrophic microorganisms isolated from black shale grown under aerobic conditions could utilize shale organic matter as the sole carbon and energy source. Colonization of shale organic matter was observed. The main biodegradation intermediates and products such as phosphonic acid dioctadecyl ester and isoindole-1,3 were detected in the aqueous phase of cultures. The bacterial community showed the ability to PAH biodegradation, assimilation of organic acids and esters as well as lipase activity. The intracellular accumulation of phosphorus by bacteria during growth on organic matter was confirmed. Strains within the genus Pseudomonas were found to dominate the bacterial population at the end of the experiment. The results of this study confirm that indigenous bacteria are likely to play a role in the biotransformation of black shale and can influence the geochemical cycles of ancient organic carbon in the deep terrestrial subsurface. This process may also occur in tailings ponds containing black shale, and cause the mobilization of potentially toxic compounds to the soil and groundwater.  相似文献   

13.
Scott AC  Young RF  Fedorak PM 《Chemosphere》2008,73(8):1258-1264
The extraction of bitumen from the oil sands in Canada releases toxic naphthenic acids into the process-affected waters. The development of an ideal analytical method for quantifying naphthenic acids (general formula C(n)H(2n+Z)O(2)) has been impeded by the complexity of these mixtures and the challenges of differentiating naphthenic acids from other naturally-occurring organic acids. The oil sands industry standard FTIR method was compared with a newly-developed GC-MS method. Naphthenic acids concentrations were measured in extracts of surface and ground waters from locations within the vicinity of and away from the oil sands deposits and in extracts of process-affected waters. In all but one case, FTIR measurements of naphthenic acids concentrations were greater than those determined by GC-MS. The detection limit of the GC-MS method was 0.01 mg L(-1) compared to 1 mg L(-1) for the FTIR method. The results indicated that the GC-MS method is more selective for naphthenic acids, and that the FTIR method overestimates their concentrations.  相似文献   

14.
A laboratory bench procedure was developed to efficiently extract naphthenic acids from bulk volumes of Athabasca oil sands tailings pond water (TPW) for use in mammalian oral toxicity testing. This solvent-based procedure involved low solvent losses and a good extraction yield with low levels of impurities. Importantly, labour-intensive centrifugation of source water to remove solids was avoided, allowing processing of much larger volumes of water compared with previous protocols. Naphthenic acids, present at an estimated concentration of 81 mg/l, were procured from 515.5 l of TPW at an overall extraction efficiency of approximately 85%. By using distillation to recover and recycle solvent, a high solvent:water ratio was maintained while actual solvent consumption was limited to 70 ml per liter of water processed. Electrospray ionization mass spectrometry suggested a highly heterogeneous naphthenic acid mixture that exhibited nearly identical proportions of monocyclic, polycyclic, and acyclic acids with molecular weights primarily between 220 and 360. Biphenyls, naphthalenes, and phenanthrene/anthracene were the most prominent impurities detected, but their levels were low (< or = 13 microg/l) even in a concentrated solution of the naphthenic acids (8549 mg/l). Naphthenic acids stored at 4 degrees C at this concentration were stable, exhibiting no significant change in concentration over a 10-month period. This bulk isolation procedure should be useful to others needing to process large volumes of tailings or other source water for the purpose of procuring moderate amounts of naphthenic acids.  相似文献   

15.
Naphthenic acids (NAs) are the most water-soluble organic components found in the Athabasca oil sands in Alberta, Canada, and these acids are released into aqueous tailing waters as a result of bitumen extraction. Although the toxicity of NAs to fish is well known, there has been no method available to estimate NAs concentrations in fish. This paper describes a newly developed analytical method using single ion monitoring gas chromatography-mass spectrometry (GC-MS) to measure NAs in fish, down to concentrations of approximately 0.1mgkg(-1) of fish flesh. This method was used to measure the uptake and depuration of commercial NAs in laboratory experiments. Exposure of rainbow trout (Oncorhynchus mykiss) to 3mg NAsl(-1) for 9d gave a bioconcentration factor of approximately 2 at pH 8.2. Within 1d after the fish were transferred to NAs-free water, about 95% of the NAs were depurated. In addition, the analytical method was used to determine if NAs were present in four species of wild fish - northern pike (Esox lucius), lake whitefish (Coregonus clupeaformis), white sucker (Catostomus commersoni), walleye (Sander vitreus) - collected from near the oil sands. Flesh samples from 23 wild fish were analyzed, and 18 of these had no detectable NAs. Four fish (one of each species) contained NAs at concentrations from 0.2 to 2.8mgkg(-1). The GC-MS results from one wild fish presented a unique problem. However, with additional work it was concluded that the NAs concentration in this fish was <0.1mgkg(-1).  相似文献   

16.
Naphthenic acids occur naturally in crude oils and in oil sands bitumens. They are toxic components in refinery wastewaters and in oil sands extraction waters. In addition, there are many industrial uses for naphthenic acids, so there is a potential for their release to the environment from a variety of activities. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. This is a complex group of carboxylic acids with the general formula CnH(2n+Z)O2, where n indicates the carbon number and Z specifies the hydrogen deficiency resulting from ring formation. Measuring the concentrations of naphthenic acids in environmental samples and determining the chemical composition of a naphthenic acids mixture are huge analytical challenges. However, new analytical methods are being applied to these problems and progress is being made to better understand this mixture of chemically similar compounds. This paper reviews a variety of analytical methods and their application to assessing biodegradation of naphthenic acids.  相似文献   

17.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha? 1 was applied GR soybean at the V4–V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha? 1 and 9.2 kg ha? 1, respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

18.
Seedlings of a sorghum x sudangrass hybrid in pots of non-sterile soil-sand mix were exposed to ozone (O(3)) at 0, 0.15, or 0.30 microl litre(-1) (7 h day(-1), 3 days week(-1)) and simulated rain (SR) adjusted with H(2)SO(4) + HNO(3) to pH 5.5, 4.0, or 2.5 (2 cm in 1.5 h per event; 2 events week(-1)) over 3 weeks in a greenhouse. Ozone suppressed shoot and root growth, but increased acid content (i.e. pH < 5.5) of SR stimulated shoot growth and had inconsistent effects on root growth. Ozone x SR chemistry interactions significantly affected plant growth. Data for 'total' bacterial populations in the rhizosphere (number of colony-forming units per gram of rhizosphere soil) exhibited a curvilinear relationship with O(3) (maximum at 0.15 microl liter(-1)). Increased acid content of SR stimulated numbers of 'total' bacteria but suppressed populations of amylolytic bacteria. Ozone and acid content of SR tended to stimulate numbers of fungal propagules in the rhizosphere, but this effect was not significant. Numbers of rhizosphere bacteria capable of phosphatase activity increased linearly with O(3), but only when SR chemistry was characterised by pH 4.0. Data for other populations of rhizosphere microorganisms did not exhibit significant relationships to O3 x SR chemistry interactions.  相似文献   

19.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

20.
Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50 mg L−1 AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10 mg L−1, whereas inhibition of germination by the diamondoid model NA was observed only at 50 mg L−1. Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10 mg L−1 severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50 mg L−1. At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号