首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
ENSO事件对上海降水中氢氧同位素变化的影响   总被引:2,自引:0,他引:2  
根据2012年1月至2017年2月上海206个降水样品实测数据,结合全球大气降水同位素网络(GNIP)提供的南京、武汉、福州、香港1961~2012年大气降水同位素数据分析不同强弱程度的ENSO事件对降水中同位素组成影响的差异性.研究时段内上海降水中δD与δ~(18)O夏秋为低值,冬春为高值.El Nino事件期间大气降水线的斜率与截距均大于非El Nino事件期间,La Nina事件期间反温度效应、降水量效应、水汽压效应较非La Nina事件期间显著.不同强弱程度的El Nino和La Nina事件影响下的上海降水中δ~(18)O、d值与海洋尼诺指数(ONI)、海表温度距平值(SSTA)、ONI极值、累积值ΣONI这4个指数具有明显的负相关关系,并且降水中δ~(18)O与ONI、SSTA两个指数相关性大小受ENSO事件的影响较大.  相似文献   

2.
温艳茹  王建力 《环境科学》2016,37(7):2462-2469
根据2015年4~10月重庆地区61场降水稳定同位素资料与相关气象资料,分析了不同时间尺度下重庆大气降水中氢氧同位素(δD、δ~(18)O)、过量氘(d)的变化特征以及它们与降水量、温度及厄尔尼诺/拉尼娜和南方涛动(ENSO)的关系.结果表明:1研究区大气降水线方程为:δD=8.28δ~(18)O+12.34(r=0.99,n=61),其斜率和截距与中国东部季风区的多处南方地区大气降水线方程的斜率和截距相似.2研究区大气降水中氢氧同位素和d均出现夏半年低、冬半年高的季节变化,影响重庆降水中氢氧同位素变化的主要原因为不同季节降水的水汽来源及气团性质的差异.3监测时段内研究区大气降水中δ~(18)O与温度、降水量相关性不显著(r=0.03;r=0.12),但却敏感响应了大气环流过程,表现出与ENSO正相关.大气降水中δ~(18)O和过量氘(d)清晰记录了2014~2015年LaNia和ElNio的转换过程.ElNio期间研究区域大气降水中δ~(18)O和d明显偏重;而在LaNia期间,δ~(18)O和d偏轻.  相似文献   

3.
托来河流域不同海拔降水稳定同位素的环境意义   总被引:1,自引:7,他引:1  
为了探讨祁连山中段托来河流域不同海拔降水稳定同位素的环境意义,依据该流域托勒站(3 367 m)和嘉峪关站(1 658 m)的降水样品和气象数据,分析了降水稳定同位素的时间变化、局地大气水线、海拔变化,讨论了降水稳定同位素与温度、降水量、平均水汽压和相对湿度的关系.结果表明,研究时段内托勒站和嘉峪关站降水稳定同位素具有一定的季节变化特征,托勒站表现为夏秋较高值,冬春季为较低值,与托勒不同的是,嘉峪关站春季较高,其他季节较低.嘉峪关站降水δ~(18)O和d-excess值展现出显著的反向变化趋势,托勒站则不显著,随海拔升高对应的相关系数呈下降趋势,反映了内陆河流域低海拔地区存在较强的云下蒸发,同时高海拔地区受局地水汽再循环的强烈影响;从嘉峪关到托勒站大气降水线的斜率和截距都明显升高,表现出从低海拔到高海拔的增加趋势;处于高海拔地区托勒站的温度效应比低海拔地区的嘉峪关站更显著,对于气温在10℃以上的降水事件而言,托勒站δ~(18)O与气温呈显著正相关,嘉峪关站则表现出相反的变化趋势,可能是嘉峪关站云下蒸发对高降水量事件稳定同位素的富集作用减弱,使得呈现降水量效应;从托勒站到嘉峪关站,δ~(18)O和dexcess与平均水汽压的正相关关系减弱,变化幅度也明显减小,原因可能是从高海拔到低海拔地区,水汽压升高,饱和水汽压升高,降水难以形成,降水量较小,降水稳定同位素受云下蒸发影响作用明显,δ~(18)O和δD偏正,高海拔地区受局地水汽再循环的作用明显,δ~(18)O和δD偏负;嘉峪关站降水δ~(18)O与平均相对湿度呈不显著正相关,托勒站则相反.研究结果为托来河流域同位素水文过程研究提供了理论依据.  相似文献   

4.
本研究基于上海地区2016年9月~2017年8月期间采集的大气降水样品,测定并分析了雨水中δD、δ18O和δ17O特征,进一步探索氘盈余(d值)和17O盈余的环境意义。结果显示:(1)降水同位素年内变化明显,δD、δ18O和δ17O同位素比值冬春偏重、夏秋偏轻,单次降水过程中同位素呈不断贫化的趋势;(2)δ18O存在降雨量效应和反温度效应:大气降水线方程、d值显示上海地区气候整体温和湿润,蒸发作用相对较小;冬春季降水较少,相对湿度较小,同位素较富集;夏秋季降水较多,相对湿度较高,同位素较为贫化;(3)综合分析17O盈余,发现上海地区大汽降水的水汽处于从海洋向陆地转移的过程当中,在运移过程中受到沿途陆表蒸发,且雨季的大气降水来源主要为海洋气团,干季主要来源于内陆,以本地蒸发为主。  相似文献   

5.
大气降水稳定同位素受温度、雨量、海拔高程、水汽源等多种因素控制,进而影响洞穴水及沉积物的同位素变化.为了更好地认识我国南北交汇带季风敏感区洞穴水对降水的响应过程,本研究分析了2015年8月4~6日河南栾川县鸡冠洞强降雨和洞内4处地下水点样品,并结合2009~2015年栾川地区近6年大气降水氧氘同位素数据研究发现:1采用HYSPLIT模型可以将鸡冠洞强降雨划分为不同水汽来源的2个阶段:高空来自南中国海的水汽以及近地面来自内陆局地蒸发的水汽,并且可以记录在单场降雨期间雨水的δ~(18)O变化特征上.2近地面来自内陆局地蒸发水汽的蒸发过程一定程度上掩盖了温度效应,并使局地大气降水线的斜率、截距和雨水过量氘均减小.3此次降雨期间鸡冠洞洞穴滴水δ~(18)O特征主要响应夏季风海源水汽的降水;鸡冠洞洞穴滴水对降雨响应最快,间隔时间约为3 h,滴水δ~(18)O随滴率升高变重,之后缓慢变轻;地下河具有相似的模式,稍有滞后;靠近洞口的池水反映出不同阶段的雨水δ~(18)O变化的差异.  相似文献   

6.
基于对成都地区2016年9月至2017年10月采集的113场次降水样品氢氧同位素的分析,发现大气次降水中δD、δ~(18)O、~(17)O、d-excess和~(17)O-excess有显著的季节性变化,旱季高雨季低,反映了该地区旱、雨两季水汽来源不同;地区大气降水线斜率和截距都偏小,表明成都降水来源于具有不同稳定同位素比率的源地,且雨滴在降落过程中发生了二次蒸发;三氧同位素大气降水线(δ'~(17)O=0. 528 9δ'~(18)O+0. 007 5)斜率介于海洋气团(0. 529)与干空气(0. 518)之间,表明成都地区处于海洋气团向内陆迁移的路径上; d值接近全球平均值,而~(17)O-excess值远较海水大,表明成都的水汽来源由海洋气团主导,且到达该地区的过程中同位素经历了严重的富集; d-excess在旱季出现的极低值可能是受到了人工降雨的影响,~(17)O-excess除了与水汽源地的相对湿度有关外,还会受到上游气团对流作用的影响,此外,成都当地的气象因素对不同季节次降水的~(17)O-excess值有不同程度的影响.  相似文献   

7.
湖水氢氧同位素组分的时间变化特征及影响因子分析   总被引:5,自引:6,他引:5  
湖水氢氧稳定同位素组分对于水文学、气象学和古气候学研究都有重要的意义.本研究在太湖对湖水HDO和H_2~(18)O组分(δDL和δ~(18)OL)开展了长期连续地观测,计算了过量氘(dL),分析了它们的时间变化规律,并研究其主要控制因素.结果表明:1湖水氢氧同位素组分存在明显的时间变化,δDL的变化范围-59.8‰~-24.2‰,δ~(18)OL的变化范围-8.6‰~-2.6‰,dL的变化范围为-7.9‰~12.9‰;暖季δDL和δ~(18)OL较高,dL较低;冷季反之.2在月尺度上,湖水蒸发量及其占湖泊入水量的比重是湖水氢氧稳定同位素富集的主要控制因素,湖水蒸发量或者蒸发量占湖泊入湖水量比重增加,δDL和δ~(18)OL升高,dL降低.3对于太湖而言,降水氢氧稳定同位素组分和水温并非湖水稳定同位素变化的控制因素.本文的研究结果可以为稳定同位素水文学研究以及与湖水稳定同位素富集相关的气象学和古气候学研究提供科学参考.  相似文献   

8.
水汽源区变化与ENSO事件显著影响季风区水循环过程。基于珠江中下游地区4个GNIP站点(中国香港、广州、桂林、柳州)的降水同位素及OLR(向外长波辐射)数据,研究了ENSO背景下δ18O的时空分布特征及ENSO事件对降水中氢氧同位素特征的影响机制。结果表明:ENSO事件是影响稳定同位素年际差异的主要因素,通过影响雨季降水的年内分配而实现;正常年大气降水线方程的斜率与截距均大于厄尔尼诺年而小于拉尼娜年;拉尼娜年加强 δ18O的反温度效应,厄尔尼诺年减弱反温度效应;厄尔尼诺与拉尼娜年热带辐合带的变化规律呈现出相反的趋势,其OLR场的变化与研究区稳定同位素特征有着较强的对应关系;ENSO事件年不同的水汽源区相对湿度特征是造成d值年际差异的主要因素。  相似文献   

9.
长江源区降水氢氧稳定同位素特征及水汽来源   总被引:2,自引:4,他引:2  
基于长江源区冬克玛底流域2014年5~10月连续采集的73个降水同位素数据,结合相关气象资料,分析了降水中δD、δ~(18)O及氘盈余(d-excess)变化特征,讨论了δ~(18)O与气温、降水量的关系,利用HYSPLIT模型追踪流域降水的水汽来源并估算不同水汽来源对降水量的贡献比例.结果表明:研究区降水中δ~(18)O和δD变化范围分别为-26.5‰~1.9‰和-195.2‰~34.0‰,且δ~(18)O和δD值随时间变化波动较大,与不同来源水汽输送有直接的关系;区域降水线的斜率和截距均大于全球大气降水线,与青藏高原北侧地区的降水线相近;不同降水类型中的δ~(18)O和δD的关系差异显著,主要与水汽来源和形成降水时的气象条件有关;由于受局地蒸发水汽及水汽输送过程影响,流域大气降水d-excess值整体上相对偏大;研究区的降水同位素存在显著的降水量效应,但不存在温度效应,表明降水量对大气降水中稳定同位素含量的控制作用更强;水汽来源轨迹表明,研究区大气降水水汽来源主要有西南季风携带的海洋性水汽、局地蒸发水汽及西风输送水汽,对降水量的贡献比例分别为43%、36%和21%.该研究结果有助于进一步了解长江源头区冬克玛底流域的大气环流特征及水循环过程.  相似文献   

10.
苗迎  章程  肖琼  赵海娟  李成习 《环境科学》2018,39(4):1589-1597
2016年9月28日至12月28日期间对漓江段13个断面地表水进行取样,取样频率为半月1次,分析硝酸盐在旱季期间漓江段的时空变化特征,并利用15 N和18 O同位素技术分析漓江段硝酸盐的来源.结果表明:①漓江水体中硝酸盐浓度范围为0.46~18.48 mg·L-1,平均值为6.18 mg·L-1,对比中国《生活饮用水卫生标准》(GB 5749-2006)中规定的硝酸盐浓度(10 mg·L-1),旱季漓江水体中硝酸盐污染程度处于较低水平.②9~12月期间漓江各断面处硝酸盐浓度呈现缓慢递增趋势,主要受旱季降雨量、径流量及人类活动强度而变化;硝酸盐浓度自漓江上游至下游表现出"增-减-增"的变化趋势,主要是污染物逐段汇入且汇入量不断增加的结果.③旱季漓江水体中硝酸盐的主要来源为土壤有机氮、人畜粪便和污水排放的混合源,主要来源于居民生活污水、人畜粪便等.④为了更好地保护漓江水质,建议加大城市排污管网的建设、修建小型污水处理设施、提高污水处理率及污水排放标准,加强旅游环境管理和环境保护宣传,提高游客环境保护意识.  相似文献   

11.
为探究关中平原降水氢氧稳定同位素特征及其水汽来源,本研究选取关中腹地的杨凌站点次降水为研究对象,利用当地2015~2018年间的98场次降水样品及同期气象资料,分析该地区降水氢氧稳定同位素(δ~2H、δ~(18)O和δ~(17)O)组成特征及其影响因素,建立当地大气降水线和三氧同位素大气降水线方程,并利用δ~(18)O、d-excess和~(17)O-excess指标尝试探讨当地可能存在的降水水汽来源,定量描述海洋和内陆源水汽对区域降水的贡献.结果表明,杨凌地区降水氢氧稳定同位素存在明显的季节性变化,同位素组成雨季(5~10月)贫化,旱季(11月~次年4月)富集;当地大气降水线的斜率和截距分别为7.7和9.1,说明研究区降水受到一定程度的蒸发分馏影响;三氧同位素大气降水线斜率为0.528,介于海水平衡分馏斜率(0.529)与水汽扩散斜率(0.518)之间,表明研究区处于海洋气团向内陆干旱区迁移的路径上.综合分析δ~(18)O、d-excess和~(17)O-excess,发现研究区降水受到来自东南季风的暖湿气团和来自西风的干冷气团的共同贡献,其中约有55%~79%的降水水汽来源于海洋,主要集中于6~8月; 21%~45%的水汽来源于内陆和局地蒸发,主要集中于10月~次年4月. 5月和9月降水水汽来源复杂,可能受海洋水汽和内陆水汽的共同补给.  相似文献   

12.
乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比   总被引:2,自引:3,他引:2  
为了揭示季风边缘区降水中稳定同位素特征及水汽来源,利用2016年10月至2017年10月采集的97个降水样品,采用相关分析和HYSPLIT模型,对乌鞘岭南、北坡降水稳定同位素的特征、大气水线方程、温度和降水量效应、水汽来源进行了对比分析.结果表明,南坡大气降水线的斜率与截距低于全球大气水线(GMWL)和北坡大气降水线;南、北坡的同位素温度效应和季节效应明显,但北坡的温度效应比南坡更为明显;除北坡夏季和南坡降水量小于5 mm时降水稳定同位素表现出微弱的降水量效应,南、北坡其它季节或其它降水量级均无明显的降水量效应;来自西北和北方的水汽占90%以上,北坡受季风水汽影响极少,南坡夏季会受到东南季风影响,局地水汽再循环对乌鞘岭南、北坡水汽也有贡献.本研究可提高对高寒山区降水同位素演化的认知,为寒旱区同位素水文学的进一步研究奠定基础.  相似文献   

13.
利用全球降水同位素观测网(GNIP)所提供的数据,研究了位于长江流域的南京、武汉、成都、昆明4个站点大气降水δ~(18)O及其相关要素的时空分布特征。对长江流域4站点大气降水中的δ~(18)O与气温、降水量、在不同时间尺度下的相关关系进行了分析与研究,提出长江流域的大气降水线方程并与全球及我国大气降水线相比较。结果表明,4站点δ~(18)O与δD年平均值波动较小,而多年月平均值波动较大,其中昆明波动最大。季节尺度下,长江流域大气降水中δ~(18)O在干季具有显著的温度效应,在湿季具有降水量效应;年尺度下,长江流域具有降水量效应。与全球大气降水线相比,长江流域大气降水线的斜率与截距都要偏小,尤其是截距偏低很多。利用HYSPLIT模型对南京与昆明站点1991年夏季水汽路径进行聚类分析,其分析结果与大气降水线及氘盈余分析结果一致,即站点存在不同水汽来源。  相似文献   

14.
我国东北地区大气降水稳定同位素特征及其水汽来源   总被引:9,自引:5,他引:9  
依据全球大气降水同位素观测网络(GNIP)中我国东北地区的月大气降水氢氧稳定同位素资料,并结合相关气象资料,分析了该地区大气降水稳定同位素时空分布特征及其影响因子,并建立了局地大气水线方程.结果表明,东北地区大气降水中δ18O值总体上较低,在时间变化上,表现为冬低夏高;从空间分布来看,由南至北加权平均δ18O值呈减小趋势;降水δ18O与温度线性关系显著,而与降水量则不存在线性关系,利用降水δ18O与温度、降水量、高程、经度和纬度等气候因子建立的多元线性回归关系可以对降水δ18O进行定量估算;采用HYSPLIT 4.9模型对GNIP观测点水汽来源进行追踪,气团聚类轨迹表明,该区全年有两条水汽路径,分别为西风带输送的大西洋、极地北冰洋冷湿水汽和太平洋暖湿水汽.  相似文献   

15.
李海宏  吴吉东 《自然资源学报》2018,33(12):2136-2148
利用上海市30个自动气象站2007—2016年逐小时降水数据和上海市应急联动平台110接报内涝灾情数据,分析了近10 a上海市暴雨和内涝灾情特征,并进一步研究致灾暴雨过程与内涝灾情的关系。结果表明:1)上海市暴雨空间分布反映了明显的城市雨岛特征,在水汽充沛的东部沿海和城市化水平较高的中心城区相对容易出现极端雨强;2)暴雨内涝灾情年变化较大,月分布呈单峰型,日分布呈双峰型,且内涝灾情数在中心城区及各区中心较为密集,反映了承灾体的空间分布特征;3)暴雨过程对内涝灾情的贡献作用明显,内涝灾情数与暴雨过程雨量、逐小时最大雨量和最大雨强显著相关,与持续时间和影响站次低度相关;4)逐小时最大雨量等于过程雨量且<60 mm时,内涝灾情数基本在20次以下,随着过程雨量增加,特别是过程雨量>100 mm时,灾情数急剧增加。暴雨特征与内涝灾情关系研究对于暴雨内涝的预报、预警和服务具有重要意义。  相似文献   

16.
长沙大气降水中稳定同位素变化及过量氘指示水汽来源   总被引:2,自引:1,他引:2  
基于2010 年1 月1 日至2012 年5 月31 日长沙日降水同位素资料,对长沙降水中稳定同位素、过量氘(记为d) 的变化特征以及它们与降水、温度和湿度的关系进行了分析。研究发现:①在季风系统下, 降水中稳定同位素、d 均具有明显的季节变化,表现出夏半年的低值与冬半年的高值交替变化的特点;②降水中稳定同位素在不同时段均存在降水量效应和湿度效应,另外,夏半年中表现为反温度效应,冬半年则表现出温度效应;③综合考虑降水中d 和δ18O 与大气湿度的关系, 可认为影响长沙降水中稳定同位素变化的主要原因与降水的气团性质有关。夏半年中,夏季风盛行,降水的水汽主要来源于西南季风、东南季风所携带的海洋水汽,空气湿度大,d 小,重同位素在水汽输送过程中因不断冷凝而大大贫化,从而降水中δ18O(δD) 较小;冬半年中,长沙受大陆性气团控制,降水的水汽则主要来源于西风带及当地蒸发,空气湿度小,降水中δ18O(δD) 以及d 均较高。  相似文献   

17.
我国南部夏季季风降水水汽来源的稳定同位素证据   总被引:9,自引:1,他引:9  
我国南部地区夏季降水多受季风影响。不同的季风将来自不同通道的水汽带入我国境内,控制降水的时空分布。论文利用CHNIP(中国大气降水同位素网络)中位于南部地区的观测站点,在2005年7月间,收集了月大气降水样及同步观测的气象数据。分析表明,降水中稳定氢氧同位素的空间分布可以很好地示踪和反演该地区夏季季风降水的3个主要水汽来源以及传输路径--体现南亚季风的西南水汽通道、体现南海季风的南海水汽通道及体现副热带季风的东南水汽通道。得到的大气降水线方程:δD=5.15δ18O-15.5反映了我国南部地区的降水过程历经了一定的蒸发。对δ18O与各环境因子的关系进行探讨时发现,δ18O与降雨量和高程存在对数关系,而与温度和相对湿度间存在显著的二次函数关系。综合考虑各环境因子对δ18O的影响,给出多元线性回归方程:δ18O(‰)=0.007H(m)+1.47T(℃)-0.02P(mm)+0.24RH(%)-66.3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号