首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: The aim of this investigation was to use activated carbon cloth (ACC) patches to study the probability and extent of dermal exposure to benzene and toluene in a shoe factory. METHODS: Inhalation and dermal exposure loading were measured simultaneously in 70 subjects on multiple days resulting in 113 observations. Dermal exposure loading was assessed by ACC patches attached to likely exposed skin areas (e.g. the palm of the hand and abdomen). A control patch at the chest and an organic vapor monitor (OVM) were used to adjust the hand and abdomen patches for the contribution from the air through passive absorption of benzene and toluene on the ACC patches. Systemic exposure was assessed by quantification of unmetabolized benzene (UBz) and toluene (UTol) in urine. RESULTS: Mean air concentrations for the study population were 1.5 and 7.5 ppm for benzene and toluene, respectively. Iterative regression analyses between the control patch, OVM and the dermal patches showed that only a small proportion of the ACC patches at the hand had likely benzene (n = 4; mean 133 microg cm(-2) h(-1)) or toluene (n = 5; mean 256 microg cm(-2) h(-1)) contamination. Positive patches were exclusively observed among subjects performing the task of gluing. Significant dermal exposure loading to the abdomen was detected only for toluene (n = 2; mean 235 microg cm(-2) h(-1)). No relation was found between having a positive hand or abdomen ACC patch and UBz or UTol levels. In contrast a strong association was found between air levels of benzene (p = 0.0016) and toluene (p < 0.0001) and their respective urinary levels. CONCLUSIONS: ACC patches are shown to be a useful technique for quantifying the probability of dermal exposure to organic solvents and to provide estimates of the potential contribution of the dermal pathway to systemic exposure. Using ACC patches we show that dermal exposure to benzene and toluene in a shoe manufacturing factory is probably rare, and when it occurred exposures were relatively low and did not significantly contribute to systemic exposure.  相似文献   

2.
Dental technicians are exposed on a daily basis to undiluted methyl methacrylate (MMA) when performing various routine tasks. Although the clinical effects of this chemical have been known for decades, no previous studies have been performed to estimate the potential dermal exposure to it. In this study we describe a patch-sampling technique to intercept the MMA that would otherwise have contaminated the skin on different parts of the hand and lower arm. Two different work tasks, making an orthodontic splint and denture preparation, were both performed under simulated workplace conditions twice by two recent graduated dental technicians. Air measurements were collected simultaneously. The results indicate that the exposure patterns associated with producing an orthodontic splint and denture preparation differed. We found work task-dependent differences in the amounts of MMA collected at the different parts of each hand, and differences between the right and left hands. There was also an interaction between hand and work task, especially for the right hand. The air measurements were positively correlated with the dermal exposure. This study highlights the importance of using a measurement strategy that takes the variability within the hand/arm body parts into account when measuring potential exposure during these kinds of work tasks. In order to establish future dermal exposure limits, more workplace and experimental studies are required.  相似文献   

3.
We investigated penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI), experimentally and as part of commercial products, in excised full-thickness human skin at 5, 10, 30, or 60 min after exposure. We observed that both monomeric and polymeric HDI were readily absorbed into the skin and that the clearcoat composition affects the penetration rate of the individual isocyanates. The short-term absorption rates for HDI monomer, biuret, and isocyanurate were determined and used to estimate the exposure time required to reach a body burden equal to the American Conference of Governmental Industrial Hygienists (ACGIH) inhalation threshold limit value (TLV) or Oregon State occupational exposure limit (OEL). Oregon is the only government entity in the United States to promulgate a short-term exposure limit (STEL) for HDI-based polyisocyanates biuret and isocyanurate. Based on these absorption rates for a slow-drying clearcoat after 10 min (1.33 μg cm(-2) h(-1)) or 60 min (0.219 μg cm(-2) h(-1)), we calculated that 6.5 and 40 min dermal exposure, respectively, is required to achieve a dose of HDI equivalent to the ACGIH TLV. For biuret, the time to achieve a dose equivalent to the Oregon OEL for slow-drying clearcoat was much shorter (<31 min) than that for fast-drying clearcoat (618 min). Isocyanurate had the shortest skin absorption times regardless of clearcoat formulation (14 s-1.7 min). These results indicate that the dose received through dermal exposure to HDI-containing clearcoats has a significant potential to exceed the dose equivalent to that received through inhalation exposure at established regulatory limits. A critical need exists to monitor dermal exposure quantitatively in exposed workers, to use proper protective equipment to reduce dermal exposure, and to re-evaluate regulatory exposure limits for isocyanates.  相似文献   

4.
The purpose of this study was to compare tanker drivers' occupational exposure level before and after the installation of vapour recovery facilities at 14 service stations. Road tanker drivers are exposed when handling volatile petrol liquid in bulk in the distribution chain. The drivers' exposure was studied during the unloading operation as the bulk petrol flowed into underground storage tanks, displacing vapours in the tank space and causing emission to the environment and the drivers' work area. The exposures were measured again when the dual point Stage I vapour recovery systems were installed for recycling vapours. Short-term measurements were carried out in the drivers' breathing zones by drawing polluted air through a charcoal tube during unloading. The samples were analysed in the laboratory by gas chromatography for C3-C11 aliphatic hydrocarbons, tert-butyl methyl ether (MTBE), tert-amyl methyl ether (MTAE), benzene, toluene and xylene. The road tanker loads delivered consisted of oxygenated and reformulated petrol (E95 and E98 brands), which contained on average 13% oxygenates. Before the installation of the vapour recovery system, the geometric mean (GM) concentration of aliphatic hydrocarbons was 65 mg m-3 (range 6-645 mg m-3) in the drivers' breathing zones. After the installation at the same service stations, the corresponding exposure level was 8.3 mg m-3 (range < 1-79 mg m-3). The GM of the MTBE concentrations was 8.6 mg m-3 (range 1-67 mg m-3) without vapour recovery and 1.5 mg m-3 (range < 0.1-10 mg m-3) with vapour recovery. The differences between the aliphatic hydrocarbons and the MTBE exposure levels during the unloading of the road tankers without and with vapour recovery were statistically significant (p < 0.05).  相似文献   

5.
This article presents the results of carbon disulfide exposure measurements in a Chinese viscose rayon factory. The objectives of the study were to identify the external exposure levels at a large factory and to investigate the 2-thiothiazolidine-4-carboxylic acid (TTCA) concentrations in the urine of the subjects who were exposed to carbon disulfide in the working place atmosphere. The metabolism of carbon disulfide in the exposed subjects was also studied in order to demonstrate the best points in time for the internal exposure sampling. The measurement of the amount of personal exposure to carbon disulfide in the air of the workplace was performed by GC-FPD; the presence of TTCA in the workers urine was analyzed by use of a modified HPLC method. The kinetics of TTCA excretion was studied by analyses at different time-points both during and after exposure to carbon disulfide in the subjects. A total of 155 personal samples were obtained. The carbon disulfide concentration in the staple viscose hall was 13.72 +/- 1.12 mg m-3 in terms of the geometric mean +/- geometric standard deviation, and was 20.05 +/- 1.33 mg m-3 in the filament spinning hall. The TTCA values in the subjects who worked in the staple spinning hall were 1.18 +/- 0.43 mg g-1 creatinine and 1.07 +/- 0.38 mg g-1 creatinine for subjects working in the filament spinning hall. The best time for TTCA sampling is at the end of the working shift, the TTCA excretion was stable for a period of 4-12 h after exposure of the subjects to the carbon disulfide. It might be that the Chinese have different anthropometric characteristics; a sampling bias may therefore appear among different races.  相似文献   

6.
Quantitative methods to measure dermal and inhalation exposure to the fungicide propiconazole were developed in the laboratory and applied in the occupational exposure setting for monitoring five farm workers' exposure during pesticide preparation and application to peach crops. Dermal exposure was measured with tape-strips applied to the skin, and the amount of propiconazole was normalized to keratin content in the tape-strip. Inhalation exposure was measured with an OVS tube placed in the worker's breathing-zone during pesticide handling. Samples were analyzed by GC-MS in EI+ mode (limit of detection 6 pg microl(-1)). Dermal exposure ranged from non-detectable to 32.1 +/- 22.6 ng per microg keratin while breathing-zone concentrations varied from 0.2 to 2.2 microg m(-3). A positive correlation was observed between breathing-zone concentrations and ambient air temperature (r2 = 0.87, p < 0.01). Breathing-zone concentrations did not correlate with dermal exposure levels (r2 = 0.11, p = 0.52). Propiconazole levels were below limit of detection when rubber gloves, coveralls, and full-face mask were used. The total-body propiconazole dose, determined for each worker by summing the estimated dermal dose and inhalation dose, ranged from 0.01 to 12 microg per kg body weight per day. Our results show that tape-stripping of the skin and the OVS can be effectively utilized to measure dermal and inhalation exposure to propiconazole, respectively, and that the dermal route of exposure contributed substantially more to the total dose than the inhalation route.  相似文献   

7.
The US Environmental Protection Agency conducts risk assessments of insecticide applications to wild birds using a model that is limited to the dietary route of exposure. However, free-flying birds are also exposed to insecticides via the inhalation and dermal routes. We measured azinphos-methyl residues on the skin plus feathers and the feet of brown-headed cowbirds (Molothrus ater) in order to quantify dermal exposure to songbirds that entered and inhabited an apple (Malus x domestica) orchard following an insecticide application. Exposure to azinphos-methyl was measured by sampling birds from an aviary that was built around an apple tree. Birds sampled at 36 h and 7-day post-application were placed in the aviary within 1 h after the application whereas birds exposed for 3 days were released into the aviary 4-day post-application. Residues on vegetation and soil were also measured. Azinphos-methyl residues were detected from the skin plus feathers and the feet from all exposure periods. Our results underscore the importance of incorporating dermal exposure into avian pesticide risk assessments.  相似文献   

8.
The exposure of paving workers to polycyclic aromatic hydrocarbons (PAH) during stone mastic asphalt (SMA) paving and remixing was evaluated. The effects on the workers' PAH exposure were also evaluated during the use of an industrial by-product, coal fly ash (CFA), instead of limestone as the filler in the SMA. The PAH exposure was measured by personal air sampling and by analysing the levels of urinary naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in the workers' pre- and post-shift urine samples. The respiratory PAH exposure of the paving workers (geometric mean (GM) 5.7 microg m(-3)) was about ten-fold that of the traffic controllers (GM 0.43 microg m(-3)). The levels of PAH metabolites were significantly higher (p < 0.05) in the post-shift urine samples than in the pre-shift urine samples, and the levels of metabolites in the post-shift urine of paving workers were significantly higher than in that of the controls (p < 0.01). Urinary 1-naphthol correlated well with the airborne concentrations of the two- to three-ring PAHs (r = 0.544, p = 0.003) and naphthalene (r = 0.655, p < 0.001), when non-smoking paving workers were tested. A good correlation was observed between urinary 1-OHP and the airborne concentrations of the four- to six-ring PAHs (r = 0.524, p = 0.003) as well as total PAHs (r = 0.575, p = 0.001). The concentrations of 1-OHP and phenanthrols in the urine of the pavers were significantly higher (p < 0.01) during remixing than during SMA paving. The CFA in the asphalt had no effect on the airborne PAH exposure or on the concentrations of the PAH metabolites in the paving workers' urine.  相似文献   

9.
Nineteen soil samples were collected in and around Songshan coking plant in Guangdong province of China and analyzed for eighteen polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs ranged from 2.36 to 1146.39 mg kg(-1) dry weight, varying significantly among the sampling sites, most individual PAHs were correlated with each other. A cluster analysis was performed to examine the correlation of PAH distribution, five groups were observed with sample types in the coking plant. 2-3 ring PAHs were predominant in group I and II, while 4-5 ring PAHs showed great abundance in group III, IV and V, which contributed to the distance from the emission sources in the coking plant and the behaviors of particle-bound and gaseous PAHs. The ratios of Flu?:?(Flu + Pyr), BaA?:?(BaA + Chr), InP?:?(InP + BgP) and Ant?:?(Ant + Phen) ratios were 0.51-0.87, 0.16-0.89, 0.47-0.68 and 0.03-0.60, respectively. The total index of all studied soils was > 6, indicating that the source of the PAHs in coking plant soils were from the pyrolysis processes. Health risk assessments were carried out by dermal PAH exposure data to quantify cancer risk. The resultant lifetime exposure levels due to TEQ(BaP) desorbed onto skin for workers ranged from 2.25 × 10(-7) to 7.86 × 10(-5) mg kg(-1) per day, and the estimated cancer risks were between 8.45 × 10(-6) and 2.94 × 10(-3), indicating that the dermal exposures of PAHs to coking workers might be acceptable in most soil sites.  相似文献   

10.
This study describes the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils, among ground personnel within the aviation industry. The OPs tri-n-butyl phosphate (TnBP), dibutyl phenyl phosphate (DBPP), triphenyl phosphate (TPP) and tricresyl phosphate (TCP) have been emphasized due to their use in such oils. Oil aerosol/vapor and total volatile organic compounds (tVOCs) in air were also determined. In total, 228 and 182 OPs and oil aerosol/vapor samples from technician and loader work tasks during work on 42 and 21 aircrafts, respectively, were collected in pairs. In general, the measured exposure levels were below the limit of quantification (LOQ) for 84%/98% (oil aerosol) and 82%/90% (TCP) of the samples collected during technician/loader work tasks. The air concentration ranges for all samples related to technician work were 相似文献   

11.
Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.  相似文献   

12.
Studies have shown that biogenic compounds, long chain secondary compounds and long lifetime anthropogenic compounds are involved in the formation of organic aerosols in both polluted areas and remote places. This work aims at developing an active sampling method to monitor these compounds (i.e. 6 straight-chain saturated aldehydes from C6 to C11; 8 straight-chain alkanes from C9 to C16; 6 monoterpenes: α-pinene, β-pinene, camphene, limonene, α-terpinene, & γ-terpinene; and 5 aromatic compounds: toluene, ethylbenzene, meta-, para- and ortho-xylenes) in remote areas. Samples are collected onto multi-bed sorbent cartridges at 200 mL min(-1) flow rate, using the automatic sampler SyPAC (TERA-Environnement, Crolles, France). No breakthrough was observed for sampling volumes up to 120 L (standard mixture at ambient temperature, with a relative humidity of 75%). As ozone has been shown to alter the samples (losses of 90% of aldehydes and up to 95% of terpenes were observed), the addition of a conditioned manganese dioxide (MnO(2)) scrubber to the system has been validated (full recovery of the affected compounds for a standard mixture at 50% relative humidity--RH). Samples are first thermodesorbed and then analysed by GC/FID/MS. This method allows suitable detection limits (from 2 ppt for camphene to 13 ppt for octanal--36 L sampled), and reproducibility (from 1% for toluene to 22% for heptanal). It has been successfully used to determine the diurnal variation of the target compounds (six 3 h samples a day) during winter and summer measurement campaigns at a remote site in the south of France.  相似文献   

13.
A method is described whereby dielectrophoresis of algal cells is used to perform rapid water quality analysis, specifically detecting the presence of CuSO4. The dielectric collection spectrum of the fresh water alga Selenastrum capricornutum was determined for a range of concentrations of CuSO4 from 25 mg L(-1) to 0.25 mg L(-1) for exposure times of 15 min and 18 h. In all cases increasing the concentration of CuSO4 reduced cell collection, but a step reduction was observed in collection between 2 mg L(-1) and 5 mg L(-1). This method has potential for forming a rapid, low-cost test for water quality with broad specificity and significantly reduced analysis time compared to current methods.  相似文献   

14.
Exposure to various chemicals can cause adverse effects to health, such as asthma and allergies, especially in children. Data on personal exposure levels in children are scarce, thus small lightweight diffusive mini-samplers for aldehydes and volatile organic compounds (VOCs) were designed to measure the exposure level of children to these chemicals. The aim of the study was to validate and examine the applicability of these mini-samplers for measuring daily chemical exposure. The diffusive mini-samplers are 20 mm in length, 11 mm in diameter, and 1.67 g in weight. The devices are cylindrically shaped with polytetrafluoroethylene membrane filters placed at each end. To measure aldehydes and acetone, 20 mg of 2,4-dinitrophenylhydrazine was used as an absorbent. To measure VOCs, a carbon molecular sieve was used. The sampling rate for each chemical was determined by parallel sampling with active samplers in a closed exposure bag. The blank levels of the chemicals and the storage stability of the device were tested. The mini-samplers were compared to commercially available diffusive samplers. To examine the applicability of the samplers, 65 elementary school children carried them for 24 h. The sampling rates for formaldehyde, acetaldehyde, and acetone were 20.9, 22.9, and 19.7 mL min(-1), respectively. The limits of quantification (LOQ) for the 24-hour sampling by high-performance liquid chromatography/ultraviolet (HPLC/UV) analysis were 8.3, 7.6, and 8.8 μg m(-3) for formaldehyde, acetaldehyde, and acetone, respectively. The sampling rates for the 11 VOCs were determined and ranged from 3.3 mL min(-1) for styrene and 2-ethyl-1-hexanol to 11.7 mL min(-1) for benzene. The LOQ for the 24-hour sampling by gas chromatography-mass spectrometry (GC-MS) analysis ranged from 5.9-105.2 μg m(-3), 1.1-24.7 parts per billion. The storage stability after 5 days ranged from 94.8 to 118.2%. Formaldehyde, acetone, benzene, and toluene were detected above the LOQ in more than 90% of the children, and the median concentrations were 21.7, 20.9, 10.1, and 21.5 μg m(-3), respectively. This study shows that the diffusive samplers developed were suitable for children to carry and were capable of measuring the children's daily chemical exposure.  相似文献   

15.
A quantitative determinants-of-exposure analysis of respirable crystalline silica (RCS) levels in the construction industry was performed using a database compiled from an extensive literature review. Statistical models were developed to predict work-shift exposure levels by trade. Monte Carlo simulation was used to recreate exposures derived from summarized measurements which were combined with single measurements for analysis. Modeling was performed using Tobit models within a multimodel inference framework, with year, sampling duration, type of environment, project purpose, project type, sampling strategy and use of exposure controls as potential predictors. 1346 RCS measurements were included in the analysis, of which 318 were non-detects and 228 were simulated from summary statistics. The model containing all the variables explained 22% of total variability. Apart from trade, sampling duration, year and strategy were the most influential predictors of RCS levels. The use of exposure controls was associated with an average decrease of 19% in exposure levels compared to none, and increased concentrations were found for industrial, demolition and renovation projects. Predicted geometric means for year 1999 were the highest for drilling rig operators (0.238 mg m(-3)) and tunnel construction workers (0.224 mg m(-3)), while the estimated exceedance fraction of the ACGIH TLV by trade ranged from 47% to 91%. The predicted geometric means in this study indicated important overexposure compared to the TLV. However, the low proportion of variability explained by the models suggests that the construction trade is only a moderate predictor of work-shift exposure levels. The impact of the different tasks performed during a work shift should also be assessed to provide better management and control of RCS exposure levels on construction sites.  相似文献   

16.
Approaches linking biodiversity assessment with landscape structure are necessary in the framework of sustainable rural development. The present paper describes a methodology to estimate plant diversity involving landscape structure as a proportional weight associated with different plant communities found in the landscape mosaic. The area occupied by a plant community, its patch number or its spatial distribution of patches are variables that could be expressed in gamma plant diversity of a territory. The methodology applies (1) remote sensing information, to identify land cover and land use types; (2) aspect, to discriminate composition of plant communities in each land cover type; (3) multi-scale field techniques, to asses plant diversity; (4) affinity analysis of plant community composition, to validate the stratified random sampling design and (5) the additive model that partitions gamma diversity into its alpha and beta components. The method was applied to three Spanish rural areas and was able to record 150-260 species per ha. Species richness, Shannon information index and Simpson concentration index were used to measure diversity in each area. The estimation using Shannon diversity index and the product of patch number and patch interspersion as weighting of plant community diversity was found to be the most appropriate method of measuring plant diversity at the landscape level.  相似文献   

17.
The development of convenient and competitive devices and methods for monitoring of organic pollutants in the aquatic environment is of increasing interest. An integrative passive sampling system has been developed which consists of a solid poly(dimethylsiloxane) (PDMS) material (tube or rod), acting as hydrophobic organic receiving phase, enclosed in a water-filled or an air-filled low-density polyethylene (LDPE) membrane tubing. These samplers enable the direct analysis of the pollutants accumulated during exposure in the receiving phase by thermodesorption-GC/MS, avoiding expensive sample preparation and cleanups. The capabilities of these sampling devices were studied for the sampling of 20 persistent organic pollutants (chlorobenzenes, hexachlorocyclohexanes, p,p'-DDE, PAHs, and PCBs) in laboratory exposure experiments. For the three sampler designs investigated the uptake of all target analytes was integrative over exposure periods up to 9 days (except PCB 101). The determined sampling rates range from 4 to 1340 microl h(-1) for the water-filled samplers and from 20 to 6360 microl h(-1) for the air-filled ones, respectively. The sampling rate of the analytes is dependent on their molecular weight, partition between water and sampler media (PDMS, polyethylene, water, air) and also of the sampler design. The passive samplers enable the estimation of time-weighted average (TWA) concentration of water pollutants in the lower ng l(-1) to pg l(-1) range.  相似文献   

18.
Methylhexahydrophthalic anhydride (MHHPA) is a hardener for hot-cured epoxy resins employed as insulators in the electric industry. MHHPA has only been measured as an ingredient with other alicyclic anhydrides, albeit there are also large processes which use only MHHPA. We collected MHHPA vapour in a set of devices: Teflon filter, glass spiral, TenaxTA tube connected consecutively together. Elution was performed with a solvent mixture of methyl-tert-butyl ether (70%), acetonitrile (30%), and acetic anhydride (0.5%). By capillary GC-ECD, the regression was linear (0.9994) in the practical low concentration range of 0.04-1 microg ml(-1) being equal to 0.001-0.035 mg m(-3) in 30 l of air. The exposure was measured in two factories manufacturing electric appliances. The assembled objects were first impregnated with a liquid epoxy/hardener mixture, and then the resin hardened at elevated temperature. In condenser manufacturing, the operators' 8 h exposure ranged from 0.068 to 0.118 mg m(-3), and the short-term exposure was during operation at ovens mean 1.90 mg m(-3). The impregnation of coiled resistors and transfer of them to ovens caused the worst exposures, short-term mean 3.846 mg m(-3) and long-term mean 2.191 mg m(-3). During the 'baking', the ovens were closed and evacuated, but when the hot objects were moved out of the ovens, they continued during chilling to emit MHHPA, mean 0.366 mg m(-3). In the adjacent areas, assembling, control rooms, offices, the exposure was still significant, 0.017-0.043 mg m(3), due to leaks from the high exposure areas. Mechanical general ventilation and local exhausts were functioning. Respirators were available for short supervising of the hot equipment.  相似文献   

19.
UV-curable acrylates are used increasingly for coating wood surfaces in the furniture industry. One of the active components, tripropylene glycol diacrylate (TPGDA), is known to be both an allergen and irritant to the skin. Methods to measure dermal exposure to skin irritants and allergens, such as acrylates, are insufficient for exposure assessment and there is none for this compound. The aim of this investigation was to develop a skin and surface sampling method, based on tape stripping, and a gas chromatographic method for quantitative analysis for assessing occupational skin exposure to multifunctional acrylates. Twelve adhesives were tested for their efficiency to remove TPGDA and UV-coating from a glass surface, the skin of guinea pigs and human volunteers employing the tape-stripping method in order to find the best performing tape. Variables that affect removal efficiency such as the applied dose and its retention time on the skin, tape adhesion time on the skin, and the number of strippings required to detect the contaminant from the skin were studied. Fixomull tape performed the best during sampling and analysis and had the most consistent removal efficiencies for the studied substances. The average removal efficiency with a single stripping at the 2 microliters TPGDA exposed skin sites was 85% (RSD = 14.1), and for UV-resin exposed sites 63% (RSD = 20.2). The results indicated that this method can be used for measuring dermal exposure to multifunctional acrylates efficiently, accurately, and economically. This method provides a sensitive and powerful tool for the assessment of dermal exposure to multifunctional acrylates both from the skin and from other contaminated surfaces in occupational field settings.  相似文献   

20.
A diffusive sampler for NO2, Willems badge, was validated in laboratory experiments and field tests. The collecting reagent for NO2 in the sampler is triethanolamine, and the analysis is based on a modified colorimetric method, the Saltzman method. The analysis was performed by a flow injection analysis (FIA) technique. The sampling rate for the sampler was determined to be 40.0 ml min-1. There was no effect of NO2 concentration or relative humidity on sampling rate, and the influence of sampling time was found to be small. The detection limit was 4 micrograms m-3 for a 24 h sample. The capacity is high enough to allow sampling of 150 micrograms m-3 for 7 days, which is twice the recommended Swedish short-term (24 h) guideline value as a 98-percentile over 6 months. In field tests, the sampler performed well, even at wind speeds higher than 2 m s-1, and at low temperatures. The overall uncertainty of the method was 24%. The sensitivity and capacity of the method also make it suitable for personal sampling for 2-8 h in working environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号