首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
This paper aims to find patterns in nest site selection by Little Terns Sterna albifrons, in the Nakdong estuary in South Korea. This estuary is important waterfowl stopover and breeding habitat, located in the middle of the East Asia-Australasian Flyway. The Little Tern is a common species easily observed near the seashore but their number is gradually declining around the world. We investigated their nests and eggs on a barrier islet in the Nakdong estuary during the breeding season (May to June, 2007), and a pattern for the nest site selection was identified using genetic programming (GP). The GP generated a predictive rule-set model for the number of Little Tern nests (training: R2 = 0.48 and test: 0.46). The physical features of average elevation, variation of elevation, plant coverage, and average plant height were estimated to determine the influence on nest numbers for Little Tern. A series of sensitivity analyses stressed that mean elevation and vegetation played an important role in nest distribution for Little Tern. The influence of these two variables could be maximized when elevation changed moderately within the sampled quadrats. The study results are regarded as a good example of applying GP to vertebrate distribution patterning and prediction with several important advantages compared to conventional modeling techniques, and can help establish a management or restoration strategy for the species.  相似文献   

2.
A stochastic simulation model of brown shrimp (Penaeus aztecus Ives) population dynamics in Galveston Bay, Texas, is described, validated, and used to evaluate the effects of management alternatives and changing environmental conditions on shrimp dynamics. The model is composed of submodels representing: (1) recruitment, (2) growth, (3) natural mortality, (4) fishing mortality, and (5) emigration of brown shrimp. The model predicts significant changes in total annual harvest from the food shrimp, bait, and recreational fisheries resulting from (1) closure of the bay system to all fishing except during the spring and fall open seasons, (2) two-week postponement of the opening and closing of the open seasons for the food shrimp fishery, (3) a 2.5°C increase and (4) a 2.5°C decrease in mean water temperature, (5) an 80% increase and (6) an 80% decrease in fishing effort. No significant change in the total annual harvest is predicted when the food shrimp fishing season is extended from May 15 through December 15. Sensitivity analysis suggests that field experimentation designed specifically to test the hypothesis of a 60-day time lag between brown shrimp recruitment into the bays and exposure to the fishery should receive high priority. Simulation results are discussed within a management framework.  相似文献   

3.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   

4.
5.
Though studies have modeled the effects of fires on elk, no studies have related the effects of post-fire landscape succession on ungulate movements and distribution using dynamic modeling techniques. The purpose of this study was to develop and test a spatially-explicit, stochastic, individual-based model (IBM) to evaluate potential movement and distribution patterns of elk (Cervus elaphus nelsoni) in relation to spatial and temporal aspects of the Cerro Grande Fire that burned north central New Mexico in May of 2000. Following extensive literature review, the SAVANNA Ecosystem Model was selected to simulate the underlying post-fire successional processes driving elk movement and distribution. Standard logisitic regression was used to analyze habitat-use patterns of ten elk from data collected using global positioning system radio collars while an additional five animals were used as an independent test set during model validation. Static variables in the form of roads, buildings, fences, and habitual use/memory were used to modify a map of impedance values based on the logistic regression of slope, aspect, and elevation. Integration with SAVANNA came through the application of a habitat suitability index (HSI), which combined movement rules written for the IBM and variables modified and produced by the dynamic ecological processes run in SAVANNA. Overall pattern analysis indicated that realistic migrational processes and habitat-use patterns emerged from movement rules incorporated into the IBM in response to advancing and receding snow when compared to the independent test set. Primary and secondary movement pathways emerged from the collective responses of simulated individuals. Using regression analyses, no significant differences between simulated animals and animals used in either model development or an independent test set revealed any differences in response to snow patterns. These considerations suggest the model was adequately corroborated based on existing data and outlined objectives.  相似文献   

6.
The Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) is one of the mollusc species that, driven mainly by the shellfish market industry, has extended throughout the world, far beyond the limits of its original habitat. The Manila clam was introduced into France for aquaculture purposes, between 1972 and 1975. In France, this venerid culture became increasingly widespread and, since 1988, this species has colonised most of the embayments along the French Atlantic coast. In 2004, this development resulted in a fishery of ca. 520 t in Arcachon Bay.  相似文献   

7.
The dynamics that govern the elevation of a coastal wetland relative to sea level are complex, involving non-linear feedbacks among opposing processes. Changes in the balance between these processes can result in significant alterations to vegetation communities that are adapted to a specific range of water levels. Given that current sedimentation rates in Padilla Bay, Washington are likely less than historical levels and that eustatic sea level rise is accelerating, the extensive Zostera marina (eelgrass) meadows in the bay may be at risk of eventual submergence. We developed a spatially explicit relative elevation model and used it to project changes in the productivity and distribution of eelgrass in Padilla Bay over the next century. The model is mechanistic and incorporates many of the processes and feedbacks that govern coastal wetland elevation change. Accretion estimates made using 210Pb dating of sediment cores, sediment characteristics measured within cores, and eelgrass productivity and decomposition data were used to initialize and calibrate the model. Validation was performed using an elevation change rate measured with a network of surface elevation tables. Both the field data and model simulations revealed a net accretion deficit for the bay. Simulations using current rates of sea level rise indicated an overall expansion of eelgrass within Padilla Bay over the next century as it migrates from the center of the bay shoreward.  相似文献   

8.
To assess habitat suitability (HS) has become an increasingly important component of species/ecosystem management. HS assessment is usually based on presence/absence data related to environmental variables. An exception is Ecological Niche Factor Analysis (ENFA), which uses only presence data and which does not require absence data. Most HS modelling is based on input of all environmental parameters (EnvPs) without environmental categorization, and does not take into account species interaction and human intervention for an assessment of HS. In this study, the EnvPs are arranged into four features: geographical features, consumable features, human-factor features, and species–human interaction features. These features affect species with respect to movement, behavior and activity. The research presented here has used an already existing dataset of wildlife species and human activities/visitations, which was compiled during 2004–2006 in Phu-Khieo Wildlife Sanctuary (PKWS). Data from 2004 to 2005 were used to produce HS maps, while the data of 2006 were used for evaluating these maps. Sambar Deer (SD) was chosen to predict its own HS. Six HS maps of SD were analyzed using ENFA in the following manner: (1) inputting all EnvPs together, (2) inputting each feature, separately and (3) integrating the four resulting HS maps by model averaging. It was found that model averaging was capable of predicting the HS of SD more reliably than the model with all EnvPs put in together. Multiple linear regressions were computed between the HS map with all EnvPs and the HS maps with each feature. The results show that the HS map with only geographical features has the highest coefficient value (0.516) while the coefficient values of other HS maps with the above features are 0.296, 0.53 and −0.006, respectively. This indicates that the geographical features have an influence on the other features and that the predicting power is lower when all EnvPs are computed in the ENFA model. Therefore, in order to generate HS, each feature should at first be put into the model separately. Following that, the average of all features will be combined.  相似文献   

9.
The benefits of genetically modified herbicide-tolerant (GMHT) sugar beet (Beta vulgaris) varieties stem from their presumed ability to improve weed control and reduce its cost, particularly targeting weed beet, a harmful annual weedy form of the genus Beta (i.e. B. vulgaris ssp. vulgaris) frequent in sugar beet fields. As weed beet is totally interfertile with sugar beet, it is thus likely to inherit the herbicide-tolerance transgene through pollen-mediated gene flow. Hence, the foreseeable advent of HT weed beet populations is a serious threat to the sustainability of GM sugar beet cropping systems. For studying and quantifying the long-term effects of cropping system components (crop succession and cultivation techniques) on weed beet population dynamics and gene flow, we developed a biophysical process-based model called GeneSys-Beet in a previous study. In the present paper, the model was employed to identify and rank the weed life-traits as function of their effect on weed beet densities and genotypes, using a global sensitivity analysis to model parameters. Monte Carlo simulations with simultaneous randomization of all life-trait parameters were carried out in three cropping systems contrasting for their risk for infestation by HT weed beets. Simulated weed plants and bolters (i.e. beet plants with flowering and seed-producing stems) were then analysed with regression models as a function of model parameters to rank processes and life-traits and quantify their effects. Key parameters were those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is more important than its exact efficacy. The ranking of life-traits though depended on the cropping system and, to a lesser extent, on the target variable (i.e. GM weeds vs. total weed population). For instance, post-emergence parameters were crucial in rotations with frequent sugar beet crops whereas pre-emergence parameters were most important when sugar beet was rare. In the rotations with frequent sugar beet and insufficient weed control, interactions between traits were small, indicating diverse populations with contrasted traits could prosper. Conversely, when sugar beet was rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful. Based on the analysis of sugar beet parameters and genetic traits, advice for the future selection of sugar beet varieties was also given. In climatic conditions similar to those used here, the priority should be given to limiting the presence of hybrid seeds in seed lots rather than decreasing varietal sensitivity to vernalization.  相似文献   

10.
Two computational methods were applied to classification of movement patterns of zebrafish (Danio rerio) to elucidate Markov processes in behavioral changes before and after treatment of formaldehyde (0.1 mg/L) in semi-natural conditions. The complex data of the movement tracks were initially classified by the Self-organizing map (SOM) to present different behavioral states of test individuals. Transition probabilities between behavioral states were further evaluated to fit Markov processes by using the hidden Markov model (HMM). Emission transition probability was also obtained from the observed variables (i.e., speed) for training with the HMM. Experimental transition and emission probability matrices were successfully estimated with the HMM for recognizing sequences of behavioral states with accuracy rates in acceptable ranges at central and boundary zones before (77.3-81.2%) and after (70.1-76.5%) treatment. A heuristic algorithm and a Markov model were efficiently combined to analyze movement patterns and could be a means of in situ behavioral monitoring tool.  相似文献   

11.
An interval dynamic multimedia fugacity (IDMF) model with a new validation criterion of interval average logarithmic residual error (IALRE) was developed in this study. The environmental fate of polycyclic aromatic hydrocarbons (PAHs) and their source apportionment in a typical oilfield of China were simulated from 1985 to 2010. The PAH concentrations predicted by the model were in agreement with the measured concentrations, which were indicated by the IALREs calculated at 0.41, 0.63, 0.52, and 0.58 for air, water, soil, and sediment, respectively. The multimedia concentrations of Σ16 PAHs were 29.55, 39.22, 31.98, and 26.69 times greater in 2010 than those in 1985, and were higher than any other year modelled. Additionally, 87.82% of PAHs remained in the soil in 2010. PAH source emission into the soil was the major modelled source, whereas PAH degradation in the air was the major modelled loss pathway; the dominant transfer process between the adjacent compartments was atmospheric deposition from air to soil. It was demonstrated that high-temperature combustion was the major source of PAHs in the air and soil, whereas biomass and coal combustion were attributed to water and sediment compartments. The IDMF model was effective in the dynamic source apportionment of PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号