首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poultry litter is known to be an excellent organic fertilizer, but the common practice of spreading litter on the surface of pastures has raised serious water-quality concerns and may limit potential benefits of litter applications. Because surface-applied litter is completely exposed to the atmosphere, runoff can transport nutrients into nearby streams and lakes, and much of the ammonium nitrogen volatilizes before it can enter the soil. Our previous research showed that a manual knifing technique to apply dry litter under a perennial pasture surface effectively prevented about 90% of nutrient loss with runoff from surface-applied litter, and tended to increase forage yield. However, this technique (known as subsurface banding) cannot become a practical management option for producers until it is mechanized. To begin that process, we tested an experimental single-shank, tractor-drawn implement designed to apply poultry litter in subsurface bands. Our objective was to compare this mechanized subsurface-banding method against conventional surface application to determine effects on nutrient loss with runoff from a perennial grassland treated with dry poultry litter. Early in the growing season, broiler litter was applied (6.7 dry-weight Mg ha−1) to each plot (except three control plots) using one of two application methods: surface broadcast manually or subsurface banded using the tractor-drawn implement. Simulated rainfall (5 cm h−1) generated 20 min of runoff from each plot for volume and analytical measurements. Results showed that subsurface-banded litter increased forage yield while decreasing nutrient (e.g. N and P) loss in runoff by at least 90% compared to surface-broadcast litter.  相似文献   

2.
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.  相似文献   

3.
Poultry litter provides a rich source of nutrients for perennial forages, but the usual practice of surface-applying litter to pastures can degrade water quality by allowing nutrients to be transported from fields in surface runoff, while much of the NH4-N volatilizes. Incorporating litter into the soil can minimize such problems in tilled systems, but has not been used for perennial forage systems. In this study, we minimized disturbance of the crop, thatch, and soil structure by using a knifing technique to move litter into the root zone. Our objective was to determine effects of poultry litter incorporation on quantity and quality of runoff water. Field plots were constructed on a silt loam soil with well-established bermudagrass [Cynodon dactylon (L.) Pers.] and mixed grass forage. Each plot had 8 to 10% slopes, borders to isolate runoff, and a downslope trough with sampling pit. Poultry litter was applied (5.6 Mg ha(-1)) by one of three methods: surface-applied, incorporated, or surface-applied on soil-aeration cuts. There were six treatment replications and three controls (no litter). Nutrient concentrations and mass losses in runoff from incorporated litter were significantly lower (generally 80-95% less) than in runoff from surface-applied litter. By the second year of treatment, litter-incorporated soils had greater rain infiltration rates, water-holding capacities, and sediment retention than soils receiving surface-applied litter. Litter incorporation also showed a strong tendency to increase forage yield.  相似文献   

4.
When improperly managed, land application of animal manures can harm the environment; however, limited watershed-scale runoff water quality data are available to research and address this issue. The water quality impacts of conversion to poultry litter fertilization on cultivated and pasture watersheds in the Texas Blackland Prairie were evaluated in this three-year study. Edge-of-field N and P concentrations and loads in surface runoff from new litter application sites were compared with losses under inorganic fertilization. The impact on downstream nutrient loss was also examined. In the fallow year with no fertilizer application, nutrient losses averaged 3 kg N ha(-1) and 0.9 kg P ha(-1) for the cultivated watersheds and were below 0.1 kg ha(-1) for the pasture watersheds. Following litter application, PO(4)-P concentrations in runoff were positively correlated to litter application rate and Mehlich-3 soil P levels. Following litter application, NO(3)-N and NH(4)-N concentrations in runoff were typically greater from cultivated watersheds, but PO(4)-P concentrations were greater for the pasture watersheds. Total N and P loads from the pasture watersheds (0.2 kg N ha(-1) and 0.7 kg P ha(-1)) were significantly lower than from the cultivated watersheds (32 kg N ha(-1) and 5 kg P ha(-1)) partly due to lower runoff volumes from the pasture watersheds. Downstream N and P concentrations and per-area loads were much lower than from edge-of-field watersheds. Results demonstrate that a properly managed annual litter application (4.5 Mg ha(-1) or less depending on litter N and P content) with supplemental N should supply necessary nutrients without detrimental water quality impacts.  相似文献   

5.
Land application of poultry litter can provide essential plant nutrients for crop production, but ammonia (NH(3)) volatilization from the litter can be detrimental to the environment. A multiseason study was conducted to quantify NH(3) volatilization rates from surface-applied poultry litter under no-till and paraplowed conservation tillage managements. Litter was applied to supply 90 to 140 kg N ha(-1). Evaluation of NH(3) volatilization was determined using gas concentrations and the flux-gradient gas transport technique using the momentum balance transport coefficient. Ammonia fluxes ranged from 3.3 to 24% of the total N applied during the winter and summer, respectively. Ammonia volatilization was rapid immediately after litter application and stopped within 7 to 8 d. Precipitation of 17 mm essentially halted volatilization, probably by transporting litter N into the soil matrix. Application of poultry to conservation-tilled cropland immediately before rainfall events would reduce N losses to the atmosphere but could also increase NO(3) leaching and runoff to streams and rivers.  相似文献   

6.
Surface application of broiler litter to no-till cotton could lead to degradation of water quality. Incorporation of broiler litter into the top surface soil (0.05 m) could alleviate this risk. A 2-yr field study was conducted on a silt loam upland soil to determine the effect of incorporation of broiler litter into the soil surface on nutrient and bacterial transport in runoff. The experimental design was a randomized complete block with four treatments and three replications. Treatments were (i) unfertilized control; (ii) surface-appliedbroiler litter at 7.8 Mg ha(-1) without incorporation; (iii) surface-applied broiler litter at 7.8 Mg ha(-1) with immediate incorporation; and (iv) inorganic fertilizer N (urea ammonium nitrate, 32% N) and inorganic fertilizer P (triple superphosphate) at the recommended rate. Phosphorus was surface appliedat 25 kg ha(-1) and N was injected at 101 kg ha(-1) into the soil using a commercial liquid fertilizer applicator. Runoff was collected from small runoff plots (2.4 m by 1.6 m) established at the bottom side of main plots (13.7 m by 6.0 m). Incorporation of broiler litter reduced total N (TN), NO3-N, water soluble P (WSP), and total P (TP) concentrations in runoffby 35, 25, 61, and 64%, respectively, and litter-associated bacteria by two to three orders of magnitude compared with unincorporated treatment. No significant difference in total suspended solids (TSS) in runoffwas obtained between incorporated and unincorporated treatments. Incorporation of broiler litter into the surface soil in the no-till system immediately after application minimized the potential risk for surface nutrient losses and bacteria transport in runoff.  相似文献   

7.
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.  相似文献   

8.
This study quantified the effects of tillage (moldboard plowing [MP], ridge tillage [RT]) and nutrient source (manure and commercial fertilizer [urea and triple superphosphate]) on sediment, NH4+ -N, NO3- -N, total P, particulate P, and soluble P losses in surface runoff and subsurface tile drainage from a clay loam soil. Treatment effects were evaluated using simulated rainfall immediately after corn (Zea mays L.) planting, the most vulnerable period for soil erosion and water quality degradation. Sediment, total P, soluble P, and NH4+ -N losses mainly occurred in surface runoff. The NO3- -N losses primarily occurred in subsurface tile drainage. In combined (surface and subsurface) flow, the MP treatment resulted in nearly two times greater sediment loss than RT (P < 0.01). Ridge tillage with urea lost at least 11 times more NH4+ -N than any other treatment (P < 0.01). Ridge tillage with manure also had the most total and soluble P losses of all treatments (P < 0.01). If all water quality parameters were equally important, then moldboard plow with manure would result in least water quality degradation of the combined flow followed by moldboard plow with urea or ridge tillage with urea (equivalent losses) and ridge tillage with manure. Tillage systems that do not incorporate surface residue and amendments appear to be more vulnerable to soluble nutrient losses mainly in surface runoff but also in subsurface drainage (due to macropore flow). Tillage systems that thoroughly mix residue and amendments in surface soil appear to be more prone to sediment and sediment-associated nutrient (particulate P) losses via surface runoff.  相似文献   

9.
Phosphorus (P) in runoff from pastures amended with poultry litter may be a significant contributor to eutrophication of lakes and streams in Georgia and other areas in the southeastern United States. The objectives of this research were to determine the effects of litter application rate and initial runoff timing on the long-term loss of P in runoff from surface-applied poultry litter and to develop equations that predict P loss in runoff under these conditions. Litter application rates of 2, 7, and 13 Mg ha(-1), and three rainfall scenarios applied to 1- x 2-m plots in a 3 x 3 randomized complete block design with three replications. The rainfall scenarios included (i) sufficient rainfall to produce runoff immediately after litter application; (ii) no rainfall for 30 d after litter application; and (iii) small rainfall events every 7 d (5 min at 75 mm h(-1)) for 30 d. Phosphorus loss was greatest from the high litter rate and immediate runoff treatments. Nonlinear regression equations based on the small plot study produced fairly accurate (r(2) = 0.52-0.62) prediction of P concentrations in runoff water from larger (0.75 ha) fields over a 2-yr period. Predicted P concentrations were closest to observed values for events that occurred shortly after litter application, and the relative error in predictions increased with time after litter application. In addition, previously developed equations relating soil test P levels to runoff P concentrations were ineffective in the presence of surface-applied litter.  相似文献   

10.
ABSTRACT: Simulated rainfall was used on experimental field plots to compare the effect of chemical fertilizer and sludge application on sediment, nitrogen, and phosphorus in runoff from no-till and conventional tillage systems. Chemical fertilizer application under the no-till system resulted in the least amount of total N and P in surface runoff. However, sludge application under the no-till system resulted in the least amount of NO3-N and sediment in surface runoff. The worst water quality scenarios were observed when either sludge or chemical fertilizer were surface-applied under a conventional tillage system. Nitrogen losses from the conventional tillage system were minimized when sludge was incorporated into the soil. However, phosphorus and sediment yield from such a system were significantly higher when compared to phosphorus and sediment yield from the no-till system. The results from this study indicate that the use of sludge on agricultural land under a no-till system can be a viable alternative to chemical fertilizer for nitrogen and phosphorus control in runoff. A more cautious approach is recommended when the sludge is incorporated into the soil in a conventional tillage system because of potential for high sediment and phosphorus yield in surface runoff.  相似文献   

11.
While the poultry industry is a major economic benefit to several areas in the USA, land application of poultry litter to recycle nutrients can lead to impaired surface and ground water quality. Amending poultry litter with alum [Al3(SO4)2 x 14H2O] has received considerable attention as a method of economically reducing ammonia volatilization in the poultry house and soluble phosphorus in runoff waters. The objective of this study was to characterize the effect of alum on broiler litter decomposition and N dynamics under laboratory conditions. Litter that had been amended with alum in the poultry house after each of the first four of five flock cycles (Experiment I) and litter that had been amended with alum after removal from a poultry house after the third flock cycle (Experiment II) were compared with unamended litter in separate studies. The litters in Experiment I were surface-applied to simulate application to grasslands, while the litters in Experiment II were incorporated to simulate application to conventionally tilled crops. The only statistically significant differences in decomposition due to alum occurred early in Experiment II and the differences were small. The only statistically significant differences in net N mineralization, soil inorganic N, and soil NH4+-N in either experiment was found in Experiment I after 70 d of incubation where soil inorganic N was significantly greater for the alum treatment. Thus, alum had little effect on decomposition or N dynamics. Results of many of the studies on litter not amended with alum should be applicable to litters amended with alum to reduce P availability.  相似文献   

12.
Thirteen metric tons of poultry litter are produced annually by poultry producers in the U.S. Poultry litter contains the sex hormones estradiol and testosterone, endocrine disruptors that have been detected in surface waters. The objective of this study was to evaluate the potential impact of poultry litter applications on estradiol and testosterone concentrations in subsurface drainage and surface runoff in irrigated crop land under no-till and conventional-till management. We conducted an irrigation study in fall of 2001 and spring of 2002. Four treatments, no-till plus poultry litter, conventional-till plus poultry litter, no-till plus conventional fertilizer, and conventional-till plus conventional fertilizer, were evaluated. Flow-weighted concentration and load ha−1 of the two hormones were measured in drainage and runoff. Soil concentrations of estradiol and testosterone were measured. Based on comparisons to the conventional fertilizer (and control) treatments, poultry litter did not add to the flow-weighted concentration or load ha−1 of either estradiol or testosterone in subsurface drainage or surface runoff. Significant differences were, however, observed between tillage treatments: flow-weighted concentrations of estradiol were greater for no-till than conventional-till plots of the June irrigation; and runoff loads of both estradiol and testosterone were less from no-till than conventional-till plots for the November irrigation. Although the differences between no-till and conventional-tillage appeared to affect the hydrologic transport of both hormones, the differences appeared to have inconsequential environmental impact.  相似文献   

13.
Because surface-applied manures can contribute to phosphorus (P) in runoff, we examined mechanical aeration of grasslands for reducing P transport by increasing infiltration of rainfall and binding of P with soil minerals. The effects of three aeration treatments and a control (aeration with cores, continuous-furrow "no-till" disk aeration perpendicular to the slope, slit aeration with tines, and no aeration treatment) on the export of total suspended solids, total Kjeldahl P (TKP), total dissolved P (TDP), dissolved reactive P (DRP), and bioavailable P (BAP) in runoff from grasslands with three manure treatments (broiler litter, dairy slurry, and no manure) were examined before and after simulated compaction by cattle. Plots (0.75 x 2 m) were established on a Cecil soil series with mixed tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] vegetation on 8 to 12% slopes. Manures were applied at a target rate of 30 kg P ha(-1), and simulated rainfall was applied at a rate of 85 mm h(-1). Although the impact of aeration type on P export varied before and after simulated compaction, overall results indicated that core aeration has the greatest potential for reducing P losses. Export of TKP was reduced by 55%, TDP by 62%, DRP by 61%, total BAP by 54%, and dissolved BAP by 57% on core-aerated plots with applied broiler litter as compared with the control (p < 0.05). Core and no-till disk aeration also showed potential for reducing P export from applied dairy slurry (p < 0.10). Given that Cecil soil is common in pastures receiving broiler litter in the Southern Piedmont, our results indicate that pairing core aeration of these pastures with litter application could have a widespread impact on surface water quality.  相似文献   

14.
Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.  相似文献   

15.
Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.  相似文献   

16.
Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.  相似文献   

17.
Phosphorus is an essential plant nutrient and critical to agricultural production, but it is also a problem when excessive amounts enter surface waters. Summer rotational grazing and winter feeding beef pasture systems at two fertility levels (56 and 28 kg available P ha(-1)) were studied to evaluate the P losses from these systems via surface runoff and subsurface flow using eight small (0.3-1.1 ha), instrumented watersheds and spring developments. Runoff events from a 14-yr period (1974-1988) were evaluated to determine the relationships between event size in mm, total dissolved reactive phosphorous (TDRP) concentration, and TDRP transport. Most of the TDRP transported was via surface runoff. There were strong correlations (r2 = 0.45-0.66) between TDRP transport and event size for all watersheds, but no significant (P = 0.05) correlations between TDRP concentration and event size. Flow-weighted average TDRP concentrations from the pasture watersheds for the 14-yr period ranged from 0.64 to 1.85 mg L(-1) with a few individual event concentrations as high as 85.7 mg L(-1). The highest concentrations were in events that occurred soon after P fertilizer application. Average seasonal flow-weighted TDRP concentrations for subsurface flow were < 0.05 mg L(-1). Applying P fertilizer to pastures in response to soil tests should keep TDRP concentrations in subsurface flow at environmentally acceptable levels. Management to reduce runoff and avoidance of P fertilizer application when runoff producing rainfall is anticipated in the next few days will help reduce the surface losses of P.  相似文献   

18.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   

19.
Land applications of manure from confined animal systems and direct deposit by grazing animals are both major sources of nutrients in streams. The objectives of this study were to determine the effects of P-based manure applications on total suspended solids (TSS) and nutrient losses from dairy manures and poultry litter surface applied to pasturelands and to compare the nutrient losses transported to the edge of the field during overland flow events. Two sets of plots were established: one set for the study of in-field release and another set for the study of edge-of-the-field nutrient transport. Release plots were constructed at three pastureland sites (previous poultry litter applications, previous liquid dairy manure application, and no prior manure application) and received four manure treatments (turkey [Meleagris gallopavo] litter, liquid dairy manure, standard cowpies, and none). Pasture plots with a history of previous manure applications released higher concentrations of TSS and higher percentages of total P (TP) in the particulate form. Transport plots were developed on pasture with no prior manure application. The average flow-weighted TP concentrations were highest in runoff samples from the plots treated with cowpies (1.57 mg L(-1)). Reducing excess P in dairy cow diets and surface applying manure to the land using P-based management practices did not increase N concentrations in runoff. This study found that nutrients are most transportable from cowpies; thus a buffer zone between pastureland and streams or other appropriate management practices are necessary to reduce nutrient losses to waterbodies.  相似文献   

20.
Research has shown that aluminum sulfate (alum) and phosphoric acid greatly reduce ammonia (NH3) volatilization from poultry litter; however, no studies have yet reported the effects of these amendments on field-scale composting of poultry litter. The objectives of this study were to (i) evaluate NH3 volatilization from composting litter by measuring both NH3 volatilization and changes in total nitrogen (N) in the litter and (ii) evaluate potential methods of reducing NH3 losses from composting poultry litter. Poultry litter was composted for 68 d the first year and 92 d the second year. Eleven treatments were screened in Year 1, which included an unamended control, a microbial mixture, a microbial mixture with 5% alum incorporated into the litter, 5 and 10% alum rates either surface-applied or incorporated, and 1 and 2% phosphoric acid rates either surface-applied or incorporated. Treatments in Year 2 included an unamended control, a microbial mixture, alum (7% by fresh wt.), and phosphoric acid (1.5% by fresh wt.). Alum and phosphoric acid reduced NH3 volatilization from composting poultry litter by as much as 76 and 54%, respectively. The highest NH3 emission rates were from microbial treatments each year. Compost treated with chemical amendments retained more initial N than all other treatments. Due to the cost and N loss associated with composting poultry litter, composting is not economical from an agronomic perspective compared with the use of fresh poultry litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号