首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

2.
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.  相似文献   

3.
The distribution of moisture, degradable C, and N after direct injection of slurry can affect the turnover and plant availability of slurry N. This study examined effects of injection method, soil conditions, and slurry properties on the infiltration of several slurry components under practical conditions. The water retention capacity of 22 pig and cattle slurries was quantified by dialysis at -0.016, -0.047, and -0.100 MPa. All slurries followed the relationship: relative water loss = 1/(1 + aVS[volatile solids]), indicating that retention of liquids in the slurry injection zone can be predicted from slurry VS and soil water potential. Two-disc injection and harrow tine injection were simulated (no slurry applied) in five trials. Two trials indicated that disc injection resulted in higher permeability compared with harrow tine injection. In a separate experiment, soil moisture and dissolved ions were monitored in and around injection slits amended with pig or cattle slurry. Moisture gradients, which were recorded with small printed-circuit-board (PCB) time-domain-reflectometry (TDR) probes, were temporally stable and reestablished following rainfall. Slit sections with pig and cattle slurry containing 13C-acetate and 15N-ammonium showed a shift in the 13C to 15N ratio of the injection zone within 24 h, which was explained by removal of dissolved C and/or retention of NH4+. Cattle slurry was more concentrated around the injection slit than pig slurry, and greater contact between slurry and soil was obtained with harrow tine injection. The heterogeneity of slurry C and N distribution after direct injection should be accounted for in models describing slurry N turnover.  相似文献   

4.
Management of animal manures to provide nutrients for crop growth has generally been based on crop N needs. However, because manures have a lower N/P ratio than most harvested crops, N-based manure management often oversupplies the crop-soil system with P, which can be lost into the environment and contribute to eutrophication of water bodies. We examined the effects of N- vs. P-based manure applications on N and P uptake by alfalfa (Medicago sativa L.), corn (Zea mays L.) for silage, and orchardgrass (Dactylis glomerata L.), leaching below the root zone, and accumulation of P in soil. Treatments included N- and P-based manure rates, with no nutrient input controls and inorganically fertilized plots for comparison. Nitrate concentrations in leachate from inorganic fertilizer or manure treatments averaged 14 mg NO(3)-N L(-1), and did not differ by nutrient treatment. Average annual total P losses in leachate did not exceed 1 kg ha(-1). In the top 5 cm of soil in plots receiving the N-based manure treatment, soil test P increased by 47%, from 85 to 125 mg kg(-1). Nitrogen- and P-based manure applications did not differ in ability to supply nutrients for crop growth, or in losses of nitrate and total P in leachate. However, the N-based manure led to significantly greater accumulation of soil test P in the surface 5 cm of soil. Surface soil P accumulation has implications for increased risk of off-field P movement.  相似文献   

5.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

6.
Methyl iodide (MeI) is a promising alternative to methyl bromide in soil fumigation. The pest-control efficacy and ground water contamination risks of MeI as a fumigant are highly related to its gas-phase distribution and leaching after soil application. In this study, the distribution and leaching of MeI in soil following shank injection and subsurface drip application were investigated. Methyl iodide (200 kg ha(-1)) was directly injected or drip-applied at a 20-cm depth into Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralfs) columns (12-cm i.d., 70-cm height) tarped with virtually impermeable film. Concentration profiles of MeI in the soil air were monitored for 7 d. Methyl iodide diffused rapidly after soil application, and reached a 70-cm depth within 2 h. Relative to shank injection, drip application inhibited diffusion, resulting in significantly lower concentration profiles in the soil air. Seven days after MeI application, fumigated soil was uncapped, aerated for 7 d, and leached with water. Leaching of MeI was significant from the soil columns under both application methods, with concentrations of >10 mug L(-1) in the early leachate. The leaching was greater following shank injection than drip application, with an overall potential of 33 g ha(-1) for shank injection and 19 g ha(-1) for drip application. Persistent residues of MeI remaining in soils after leaching were 50 to 240 ng kg(-1), and the contents were slightly higher following shank injection than drip application. The results suggest that fumigation with MeI may pose a risk of ground water contamination in vulnerable areas.  相似文献   

7.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level.  相似文献   

8.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

9.
The effect of physical–chemical slurry treatment on the mobility and transformation of nitrogen and organic matter from pig slurry after soil application is evaluated. Two different pig slurries (one treated by stripping with air at pH = 9 and another non-treated) were applied at the top of a soil column, containing approximately 100 kg of soil. Effluents were monitored measuring concentration values of ammonia, nitrites, nitrates and total organic carbon (TOC). The breakthrough curves were modelled using STANMOD and HYDRUS 1D codes. Low concentrations of ammonia were detected in the effluent recovered at the bottom of the soil profile for both types of slurry. Nitrate concentration in effluent was lower and more homogenous over time when applying stripping treated pig slurry. In N modelling, adsorption of ammonia by soil proved an important process, nitrite and nitrate adsorption being less significant, although not negligible. Transformation from ammonia to nitrite controls the kinetics of the nitrification process. Total organic carbon in the column effluent was higher in the experiment using treated pig slurry, which can be attributed to organic matter solubilisation in the stripping treatment process.  相似文献   

10.
Acidification of slurry with sulfuric acid is a recent agricultural practice that may serve a double purpose: reducing ammonia emission and ensuring crop sulfur sufficiency. We investigated S transformations in untreated and acidified pig slurry stored for up to 11 mo at 2, 10, or 20 degrees C. Furthermore, the fertilizer efficiency of sulfuric acid in acidified slurry was investigated in a pot experiment with spring barley. The sulfate content from acidification with sulfuric acid was relatively stable and even after 11 mo of storage the majority was in the plant-available sulfate form. Microbial sulfate reduction during storage of acidified pig slurry was limited, presumably due to initial pH effects and a limitation in the availability of easily degradable organic matter. Sulfide accumulation was observed during storage but the sulfide levels in acidified slurry did not exceed those of the untreated slurry for several months after addition. The S fertilizer value of the acidified slurry was considerable as a result of the stable sulfate pool during storage. The high content of inorganic S in the acidified slurry may potentially lead to development of odorous volatile sulfur-containing compounds and investigations are needed into the relationship between odor development and the C and S composition of the slurry.  相似文献   

11.
The time between swine (Sus scrofa) manure application to soil as a crop fertilizer, the first rainfall event, and the frequency of rainfall events should influence leaching potential of fecal pathogens. Soil microcosms were inoculated in the lab with a swine manure isolate of Escherichia coli, strain RS2G, expressing green fluorescent protein, to examine how timing and frequency of rainfall events influences RS2G leaching and survival in soil. Liquid swine manure inoculated with RS2G was applied to intact soil cores (20 cm in diameter x 30 cm long) 4, 8, or 16 d before the first rainfall event (50.8 mm over a 4-h period), and each core received one to three rainfall events. Manure application methods (no-till surface-broadcast, broadcast and incorporated, and tilled before broadcast) had no affect on leaching, although there was greater survival in soils when the manure had been incorporated. Most of the RS2G in the leachate appeared following the first rainfall event and RS2G leaching decreased with increasing time between manure application and the first rainfall, although leachates contained as much as 3.4 to 4.5 log colony forming units (CFU) 100 mL(-1) of RS2G when the first rainfall occurred 16 d after manure application. With increasing frequency of rainfalls there was a decrease in subsequent concentrations of RS2G in the leachate. There was no correlation between leachate RS2G and total coliforms or fecal streptococci concentrations. Soil RS2G numbers were 1 to 10% of the inoculum regardless of the length of time between manure application and the first rainfall. RS2G leaching was mostly influenced by the time between manure application and first rainfall event, and significant leaching and survival in soil was possible even if the first rain occurred 16 d after manure application.  相似文献   

12.
Ammonia emissions after spreading animal manure contribute a major share to N losses from agriculture. There is an increasing interest in anaerobic co-digestion of liquid manure with organic additives. This fermentation results in a change of physical and chemical parameters of the slurry. Among these are an increased pH and ammonium content, implying a higher risk of NH3 losses from fermentation products. To compare different application techniques and the effect of fermentation on NH3 volatilization, we used the standard comparison method and tested it for reliability. This method seems to be perfectly suited for experiments with a large number of treatments and replicates if prerequisites concerning the experimental layout are considered. We tested four different application techniques on arable and grassland sites. The more the substrate was incorporated into the soil or applied near the soil surface on the grassland site, the less NH3 was lost. Injection of the substrate reduced losses to less than 10% of applied NH4+ on both sites, whereas losses after splash plate application amounted to more than 30%. Trail shoe application on grassland performed as well as injection. Harrowing on arable land also reduced emissions efficiently, if harrowing occurred within the first 2 h after application. Emissions from trail hose-applied co-fermentation product were not greater than from unfermented slurry. Better infiltration of the less viscous substrate seemed to have compensated for the increased loss potential.  相似文献   

13.
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil organic matter (SOM), but the exact mechanisms are unknown. Our objective was to provide insight into the sorption mechanism of HOCs in SOM by studying the sorption-desorption processes of naphthalene in a mineral soil, its humic fractions, and lignin. Additionally, humin and lignin were used for studying the effects of temperature and cosolvent on HOC sorption. All isotherms were nonlinear. The humin and lignin isotherms became more linear at elevated temperatures and with the addition of methanol indicating a condensed to expanded structural phase transition. Isotherm nonlinearity and hysteresis increased in the following order: soil humic acid (HA) < soil < soil humin. Of the samples, aliphatic-rich humin exhibited the largest degree of nonlinearity and had the highest sorption capacity for naphthalene. High nonlinearity and hysteresis in humin were most likely caused by its condensed structure. A novel aliphatic, amorphous condensed conformation is proposed. This conformation can account for both high sorption capacities and increased nonlinearity observed for aliphatic-rich samples and can explain many sorption disparities discussed in the literature. This study clearly illustrates the importance of both aliphatic and aromatic moieties for HOC sorption in SOM.  相似文献   

14.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

15.
For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective prevention of leaching, breeding of new plant material, and use of the contaminated biomass (e.g., as biofuels) will be crucial for the acceptance and the economic breakthrough of enhanced phytoextraction.  相似文献   

16.
The ability to reuse carbonatic lake-dredged materials (CLDM) for agricultural purposes is important because it reduces offshore disposal and provides an alternative to disposal of the materials in landfills that are already overtaxed. A four-year (2001 to 2005) study on land application of CLDM as an option for disposal was conducted on a beef cattle pasture in south central Florida. The objectives of this study were (i) to assess CLDM as a soil amendment to improve quality of sandy soils in most subtropical beef cattle pastures and (ii) to determine the effect of CLDM on productivity and nutritive values of bahiagrass (BG, Paspalum notatum Flügge) in subtropical beef cattle pasture. The five treatment combinations arranged in randomized complete block design were represented by plots with different ratios (R) of natural soil (NS) to CLDM: R1 (1000 g kg(-1):0 g kg(-1)); R2 (750 g kg(-1):250 g kg(-1)); R3 (500 g kg(-1):500 g kg(-1)); R4 (250 g kg(-1):750 g kg(-1)); and R5 (0 g kg(-1):1000 g kg(-1)). Addition of CLDM had significant (p < or = 0.001) effects on soil quality and favorable influence on forage establishment and nutritive values. Compared with the control plots (0 g kg(-1)), the soils in plots amended with CLDM exhibited (i) lower penetration resistance, (ii) an increase in soil pH and exchangeable cations (Ca and Mg), and (iii) decrease in the levels of soil trace metals (Mn, Cu, Fe, Zn, and Si). Results disclosed consistently and significantly (p < or = 0.001) higher BG biomass production (forage yield = -106.3x(2) + 1015.8x - 39.2; R(2) = 0.99**) and crude protein content (CP = 1.24x + 6.48; R(2) = 0.94**) from plots amended with CLDM than those of BG planted on plots with no CLDM treatment.  相似文献   

17.
Freshwater mussels (order Unionida) are a highly imperiled group of organisms that are at risk from rising stream temperatures (T). There is a need to understand the potential effects of land use (LU) and climate change (CC) on stream T and have a measure of uncertainty. We used available downscaled climate projections and LU change simulations to simulate the potential effects on average daily stream T from 2020 to 2060. Monte Carlo simulations were run, and a novel technique to analyze results was used to assess changes in hydrologic and stream T response. Simulations of daily mean T were used as input to our stochastic hourly T model. CC effects were on average two orders of magnitude greater than LU impacts on mean daily stream T. LU change affected stream T primarily in headwater streams, on average up to 2.1°C over short durations, and projected CC affected stream T, on average 2.1‐3.3°C by 2060. Daily mean flow and T ratios from Monte Carlo simulations indicated greater variance in the response of streamflow (up to 55%) to LU change than in the response of stream T (up to 9%), and greater variance in headwater stream segments compared to higher order stream segments for both streamflow and T response. Simulations indicated that combined effects of climate and LU change were not additive, suggesting a complex interaction and that forecasting long‐term stream T response requires simulating CC and LU change simultaneously.  相似文献   

18.
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.  相似文献   

19.
To reduce endosulfan (C9H6O3Cl6S; 6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) contamination in rivers and waterways, it is important to know the relative significances of airborne transport pathways (including spray drift, vapor transport, and dust transport) and waterborne transport pathways (including overland and stream runoff). This work uses an integrated modeling approach to assess the absolute and relative contributions of these pathways to riverine endosulfan concentrations. The modeling framework involves two parts: a set of simple models for each transport pathway, and a model for the physical and chemical processes acting on endosulfan in river water. An averaging process is used to calculate the effects of transport pathways at the regional scale. The results show that spray drift, vapor transport, and runoff are all significant pathways. Dust transport is found to be insignificant. Spray drift and vapor transport both contribute low-level but nearly continuous inputs to the riverine endosulfan load during spraying season in a large cotton (Gossypium hirsutum L.)-growing area, whereas runoff provides occasional but higher inputs. These findings are supported by broad agreement between model predictions and observed typical riverine endosulfan concentrations in two rivers.  相似文献   

20.
Current vegetable production systems use polyethylene (plastic) mulch and require multiple applications of agrochemicals. During rain events, runoff from vegetable production is enhanced because 50 to 75% of the field is covered with an impervious surface. This study was conducted to quantify off-site movement of soil and pesticides with runoff from tomato (Lycopersicon esculentum Mill.) plots containing polyethylene mulch and a vegetative mulch, hairy vetch (Vicia villosa Roth). Side-by-side field plots were instrumented with automated flow meters and samplers to measure and collect runoff, which was filtered, extracted, and analyzed to determine soil and pesticide loss. Seasonal losses of two to four times more water and at least three times as much sediment were observed from plots with polyethvlene mulch (55.4 to 146 L m(-2) and 247 to 535 g m(-2), respectively) versus plots with hairy vetch residue (13.7 to 75.7 L m(-2) and 32.8 to 118 g m(-2), respectively). Geometric means (+/-standard deviation) of total pesticide loads for chlorothalonil (tetrachloroisophthalonitrile) and alpha-and beta-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro6,9-methano-2,4,3-benzodioxathiepin 3-oxide) for a runoff event were 19, 6, and 9 times greater from polyethylene (800+/-4.6, 17.6+/-3.9, and 39.1+/-4.9 microg m(-2), respectively) than from hairy vetch mulch plots (42+/-6.0, 2.8+/-5.0, and 4.3+/-4.6 microg m(-2), respectively) due to greater concentrations and larger runoff volumes. The increased runoff volume, soil loss, and off-site loading of pesticides measured in runoff from the polyethylene mulch suggests that this management practice is less sustainable and may have a harmful effect on the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号