首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Land applications of manure from confined animal systems and direct deposit by grazing animals are both major sources of nutrients in streams. The objectives of this study were to determine the effects of P-based manure applications on total suspended solids (TSS) and nutrient losses from dairy manures and poultry litter surface applied to pasturelands and to compare the nutrient losses transported to the edge of the field during overland flow events. Two sets of plots were established: one set for the study of in-field release and another set for the study of edge-of-the-field nutrient transport. Release plots were constructed at three pastureland sites (previous poultry litter applications, previous liquid dairy manure application, and no prior manure application) and received four manure treatments (turkey [Meleagris gallopavo] litter, liquid dairy manure, standard cowpies, and none). Pasture plots with a history of previous manure applications released higher concentrations of TSS and higher percentages of total P (TP) in the particulate form. Transport plots were developed on pasture with no prior manure application. The average flow-weighted TP concentrations were highest in runoff samples from the plots treated with cowpies (1.57 mg L(-1)). Reducing excess P in dairy cow diets and surface applying manure to the land using P-based management practices did not increase N concentrations in runoff. This study found that nutrients are most transportable from cowpies; thus a buffer zone between pastureland and streams or other appropriate management practices are necessary to reduce nutrient losses to waterbodies.  相似文献   

2.
Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.  相似文献   

3.
Poultry litter is known to be an excellent organic fertilizer, but the common practice of spreading litter on the surface of pastures has raised serious water-quality concerns and may limit potential benefits of litter applications. Because surface-applied litter is completely exposed to the atmosphere, runoff can transport nutrients into nearby streams and lakes, and much of the ammonium nitrogen volatilizes before it can enter the soil. Our previous research showed that a manual knifing technique to apply dry litter under a perennial pasture surface effectively prevented about 90% of nutrient loss with runoff from surface-applied litter, and tended to increase forage yield. However, this technique (known as subsurface banding) cannot become a practical management option for producers until it is mechanized. To begin that process, we tested an experimental single-shank, tractor-drawn implement designed to apply poultry litter in subsurface bands. Our objective was to compare this mechanized subsurface-banding method against conventional surface application to determine effects on nutrient loss with runoff from a perennial grassland treated with dry poultry litter. Early in the growing season, broiler litter was applied (6.7 dry-weight Mg ha−1) to each plot (except three control plots) using one of two application methods: surface broadcast manually or subsurface banded using the tractor-drawn implement. Simulated rainfall (5 cm h−1) generated 20 min of runoff from each plot for volume and analytical measurements. Results showed that subsurface-banded litter increased forage yield while decreasing nutrient (e.g. N and P) loss in runoff by at least 90% compared to surface-broadcast litter.  相似文献   

4.
ABSTRACT: Grazed pastures represent a potential source of non‐point pollution. In comparison to other nonpoint sources (e.g., row‐cropped lands), relatively little information exists regarding possible magnitudes of nutrient losses from grazed pasture, how those losses are affected by management variables, and how the losses can be minimized. The objective of this study was to measure concentrations of nitrogen (N), phosphorus (P), and solids in runoff from fescue plots and relate those measurements to simulated forage management strategy. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. The experimental treatments applied to the plots varied in terms of forage height and material applied (none, manure, or manure and urine). Runoff was sampled for six simulated rainfall events applied over the summer of 1997 and analyzed for nitrate N (NO3‐N), ammonia N (NH3‐N), total Kjeldahl N (TKN), ortho‐P (PO4‐P), total P (TP), and total suspended solids (TSS). All runoff constituents exhibited dependence on the date of simulated rainfall with generally higher concentrations measured when simulated rainfall followed relatively dry periods. The effects of forage height and manure addition were mixed. Highest runoff N concentrations were associated with the greatest forage heights, whereas highest P concentrations occurred for the least forage heights. Manure/urine addition increased runoff P concentrations relative to controls (no manure/urine) for both the greatest and least forage heights, but runoff N concentrations were increased only for the greatest forage heights. These findings indicate that runoff of N and P is at least as sensitive to amount and proximity of preceding rainfall and suggest that managing forage to stimulate growth and plant uptake can reduce runoff of N.  相似文献   

5.
Environmental concerns are driving manure management in many areas from a traditional nitrogen (N) basis toward phosphorus (P)-based nutrient management plans. We investigated how changing nutrient management from an N to a P basis affected crop yields and soil properties in high P soils over a 7-yr period. Three sites were established on farmers' fields, and at each site the same six treatments were applied for 6 or 7 yr. These treatments were (i) no P; (ii) poultry litter applied on an N basis; (iii) inorganic P, equal to the P applied in treatment 2; (iv) poultry litter applied on an estimated annual crop P removal basis; (v) inorganic P, equal to the P applied in treatment iv; and (vi) poultry litter applied once every 2 or 3 yr at a 2- or 3-yr crop removal P rate. All treatments received the same rate of plant-available N. Yields, P balance, soil pH, Mehlich 1 P, and water-soluble P (WSP) were monitored during the experiment. Over the course of the experiment, litter had the beneficial effect of raising soil pH relative to the inorganic treatments. After 7 yr, Mehlich 1 P and WSP were greatest in soils under the N-based treatments, smallest in the no P treatment, and intermediate in the P-based treatments. For example, at the Shenandoah site, Mehlich 1 P decreased by 35 mg kg(-1) under the no P treatment and increased by 36 mg kg(-1) under the inorganic N-based treatment. There were no significant differences between inorganic fertilizer and poultry litter nutrient sources. The results of this study show that soil test P can be decreased in high-P soils over a few years by changing from an N-based to a P-based nutrient management plan or stopping P applications without negatively affecting yields.  相似文献   

6.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

7.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   

8.
A 4-yr (2005-2008) study was conducted to evaluate the potential of pasture water management for controlling nutrient losses in surface runoff in the Northern Everglades. Two pasture water management treatments were investigated on Bahia grass ( Flüggé) pastures: reduced flow and unobstructed flow. The reduced flow treatment was applied to four of eight 20.23-ha pastures by installing water control structures in pasture drainage ditches with flashboards set at a predetermined height. Four other pastures received the unobstructed-flow treatment, in which surface runoff exited pastures unimpeded. Automated instruments measured runoff volume and collected surface water samples for nutrient analysis. In analyzing data for before-after treatment analysis, the 2005 results were removed because of structural failure in water control structures and the 2007 results were removed because of drought conditions. Pasture water retention significantly reduced annual total nitrogen (TN) loads, which were 11.28 kg ha and 6.28 kg ha, respectively, in pastures with unobstructed and reduced flow. Total phosphorus (TP) loads were 27% lower in pastures with reduced flow than in pastures with unobstructed flow, but this difference was not statistically significant. Concentrations of available soil P were significantly greater in pastures with reduced flow. Pasture water retention appears to be an effective approach for reducing runoff volume and TN loads from cattle pastures in the Northern Everglades, but the potential to reduce TP loads may be diminished if higher water table conditions cause increased P release from soils, which could result in higher P concentration in surface runoff.  相似文献   

9.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

10.
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

11.
Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.  相似文献   

12.
Environmental impacts of composting poultry litter with chemical amendments at the field scale have not been well quantified. The objectives of this study were to measure (i) P runoff and (ii) forage yield and N uptake from small plots fertilized with composted and fresh poultry litter. Two composting studies, aerated using mechanical turning, were conducted in consecutive years. Composted litter was collected at the completion of each study for use in runoff studies. Treatments in runoff studies included an unfertilized control, fresh (uncomposted) poultry litter, and litter composted with no amendment, H3PO4, alum, or a microbial mixture. An additional treatment, litter composted with alum plus the microbial mixture, was evaluated during the first year. Fertilizer treatments were applied at rates equivalent to 8.96 Mg ha(-1) and rainfall simulators were used to produce a 5 cm h(-1) storm event. Composted poultry litter, regardless of treatment, had higher total P concentrations than fresh poultry litter. Composting poultry litter resulted in reductions of N/P ratios by as much as 51%. Soluble reactive P concentrations were lowest in alum-treated compost, which reduced soluble P concentrations in runoff water by as much as 84%. Forage yields and N uptake were greatest from plots fertilized with fresh poultry litter. Composting poultry litter without the addition of C sources can increase P concentrations in the end product and surface runoff. This study also indicated that increased rates of composted poultry litter would be required to meet equivalent N rates supplied by fresh poultry litter.  相似文献   

13.
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems.  相似文献   

14.
Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application.  相似文献   

15.
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.  相似文献   

16.
Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks.  相似文献   

17.
Land application of animal manures such as poultry litter is a common practice, especially in states with surplus manure. Past studies have shown that animal manure may contain estrogens, which are classified as endocrine-disrupting chemicals and may pose a threat to aquatic and wildlife species. We evaluated the concentrations of estrogens in surface runoff from experimental plots (5 x 12 m each) receiving raw and pelletized poultry litter. We evaluated the free (estrone, E1; 17beta-estradiol, E2beta; estriol, E3) and conjugate forms (glucuronides and sulfates) of estrogens, which differ in their toxicity. Sampling was performed for 10 natural storm events over a 4-mo period (April-July 2008). Estrogen concentrations were screened using enzyme-linked immunosorbent assay (ELISA), followed by quantification using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Concentrations of estrogens from ELISA were much higher than the LC/MS/MS values, indicating crossreactivity with organic compounds. Exports of estrogens were much lower from soils amended with pelletized poultry litter than the raw form of the litter. No-tillage management practice also resulted in a lower export of estrogens with surface runoff compared with reduced tillage. The concentrations and exports of conjugate forms of estrogens were much higher than the free forms for some treatments, indicating that the conjugate forms should be considered for a comprehensive assessment of the threat posed by estrogens.  相似文献   

18.
Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.  相似文献   

19.
Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.  相似文献   

20.
Phosphorus in runoff from fields where poultry litter is surface-applied is an environmental concern. We investigated the effect of adding phytase and reducing supplemental P in poultry diets and composting poultry manures, with and without Fe and Al amendments, on P in manures, composts, and runoff. We used four diets: normal (no phytase) with 0.4% supplemental P, normal + phytase, phytase + 0.3% P, and phytase + 0.2% P. Adding phytase and decreasing supplemental P in diets reduced total P but increased water-extractable P in manure. Compared with manures, composting reduced both total P, due to dilution of manure with woodchips and straw, and water-extractable P, but beyond a dilution effect so that the ratio of water-extractable P to total P was less in compost than manure. Adding Fe and Al during composting did not consistently change total P or water-extractable P. Manures and composts were surface-applied to soil boxes at a rate of 50 kg total P ha(-1) and subjected to simulated rainfall, with runoff collected for 30 min. For manures, phytase and decreased P in diets had no significant effect on total P or molybdate-reactive P loads (kg ha(-1)) in runoff. Composting reduced total P and molybdate-reactive P loads in runoff, and adding Fe and Al to compost reduced total P but not molybdate-reactive P loads in runoff. Molybdate-reactive P in runoff (mg box(-1)) was well correlated to water-extractable P applied to boxes (mg box(-1)) in manures and composts. Therefore, the final environmental impact of dietary phytase will depend on the management of poultry diets, manure, and farm-scale P balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号