首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A number of waste life cycle assessment (LCA) models have been gradually developed since the early 1990s, in a number of countries, usually independently from each other. Large discrepancies in results have been observed among different waste LCA models, although it has also been shown that results from different LCA studies can be consistent. This paper is an attempt to identify, review and analyse methodologies and technical assumptions used in various parts of selected waste LCA models. Several criteria were identified, which could have significant impacts on the results, such as the functional unit, system boundaries, waste composition and energy modelling. The modelling assumptions of waste management processes, ranging from collection, transportation, intermediate facilities, recycling, thermal treatment, biological treatment, and landfilling, are obviously critical when comparing waste LCA models.This review infers that some of the differences in waste LCA models are inherent to the time they were developed. It is expected that models developed later, benefit from past modelling assumptions and knowledge and issues. Models developed in different countries furthermore rely on geographic specificities that have an impact on the results of waste LCA models. The review concludes that more effort should be employed to harmonise and validate non-geographic assumptions to strengthen waste LCA modelling.  相似文献   

2.
The distribution and impacts of different nitrogen pollutants are inextricably linked. To understand the problem fully, the interactions between the different pollutants need to be taken into account. This is particularly important when it comes to abatement techniques, since measures to reduce emissions of one nitrogen pollutant can often lead to an increase in another. This project represents a step towards greater understanding of these issues by linking together new and existing nitrogen flux models into a larger framework. The modelling framework has been constructed and some of the nitrogen flows between fields, farms and the atmosphere have been modelled for a UK study area for typical farm management scenarios.  相似文献   

3.
The distribution and impacts of different nitrogen pollutants are inextricably linked. To understand the problem fully, the interactions between the different pollutants need to be taken into account. This is particularly important when it comes to abatement techniques, since measures to reduce emissions of one nitrogen pollutant can often lead to an increase in another. This project represents a step towards greater understanding of these issues by linking together new and existing nitrogen flux models into a larger framework. The modelling framework has been constructed and some of the nitrogen flows between fields, farms and the atmosphere have been modelled for a UK study area for typical farm management scenarios.  相似文献   

4.
In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.  相似文献   

5.
Experience with the use of LCA-modelling (EASEWASTE) in waste management.   总被引:2,自引:0,他引:2  
Life-cycle assessment (LCA) models are becoming the principal decision support tools of waste management systems. This paper describes our experience with the use of EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies), a new computerized LCA-based model for integrated waste management. Our findings provide a quantitative understanding of waste management systems and may reveal consistent approaches to improve their environmental performances. EASEWASTE provides a versatile system modelling facility combined with a complete life-cycle impact assessment and in addition to the traditional impact categories addresses toxicity-related categories. New categories dealing with stored ecotoxicity and spoiled groundwater resources have been introduced. EASEWASTE has been applied in several studies, including full-scale assessments of waste management in Danish municipalities. These studies led to numerous modelling issues: the need of combining process-specific and input-specific emissions, the choice of a meaningful time horizon, the way of accounting for biological carbon emissions, the problem of stored ecotoxicity and aspects of crediting the waste management system with the savings inherent in avoided production of energy and materials. Interpretation of results showed that waste management systems can be designed in an environmentally sustainable manner where energy recovery processes lead to substantial avoidance of emissions and savings of resources.  相似文献   

6.
This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models.  相似文献   

7.
A decision-support model for determining the feasibility of a planned energy-from-waste (EfW) investment for an integrated waste management and energy supply system is presented. The aim is to present an easy-to-understand, inexpensive and fast-to-use tool to decision-makers for modelling and evaluating different kinds of processes. Special emphasis is put on forming the model and interpretation of the results of the example case. The simple integrated system management (SISMan) model is presented through a practical example of the use of the model. In the example the viability of the described system is studied by comparing five different cases including different waste-derived fuels (WDF), non-segregated municipal solid waste (MSW) being one of the fuel options. The nominal power output of the EfW plant varied in each case according to the WDF classification. The numeric values for two main variables for each WDF type were determined, the WDF price at the gate of the EfW plant and the waste management fee (WMF) according to the 'polluter pays' -principle. Comparison between the five cases was carried out according to two determinants, the WMF related to each case and the recovery rate related to each case. The numeric values for the constants and variables used in the calculations were chosen as realistically as possible using available data related to the issue. In the example of this paper, the mass-incineration solution ('pure' MSW as a fuel) was found to be the most viable solution for the described system according to the calculations. However, the final decision of the decision-makers might differ from this in the real world due to extra 'fuzzy' information that cannot be reliably included in the calculations. This paper shows that certain key values of modelled systems can be calculated using an easy-to-use tool at the very early stages of a larger design process involving municipal and business partners. The use of this kind of tools could significantly decrease the overall design costs of large systems in the long run by cutting out irrational system options at the very beginning of the planning.  相似文献   

8.
Many modern waste treatment processes and waste management systems are able to treat many different types of waste at the same time, and deliver a number of useful outputs (secondary materials, energy) as well. These systems are thus increasingly multi-functional. As such, in life cycle assessment studies, they create problems related to multi-functionality and allocation. Especially in LCAs of waste management systems, the solution in the form of system expansion or avoided burdens approach dominates the practice, and the partitioning approach plays a minor role. In this paper, we analyse the logic and problems of these two approaches. It appears that for the avoided burdens approach, the number of 'what-if' assumptions is so large that LCAs on the same topic lead to quite diverging results. Since 'what-if' questions cannot be answered in an unambiguous way, such questions should preferably be left outside of a primarily scientific tool. The partitioning approach is not free from arbitrary choices as well, but, in contrast to the 'what-if' approaches, it does not claim to predict what happens or what would have happened.  相似文献   

9.
This paper presents the results of life cycle inventory (LCI) analyses that were carried out to determine the environmental impacts (emissions, resource extractions and land use) of different newspaper waste management options for the Helsinki Metropolitan Area (HMA). LCI analyses were performed for five product systems, in which discarded newspapers were divided into two streams: separately collected newspapers and newspapers in mixed waste. In all the options, the manufacturing and printing processes of newspaper were kept unchanged. The waste management alternatives included combinations of material recycling, energy recovery and landfilling. These product systems were modelled using the current collection rate of newspaper and four additional collection rates. The LCIs of the product systems showed that the life cycle phase causing the most environmental impacts was the paper mill. When comparing the different waste management systems, the energy recovery options were in general superior to landfilling. The ecological implications of the increased energy recovery and decreased material recycling of newspaper were, however, not yet considered in the study. These aspects were assessed in the life cycle impact assessment (LCIA), which was performed after the LCI phase.  相似文献   

10.
Integrated waste management--looking beyond the solid waste horizon   总被引:1,自引:0,他引:1  
Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options, (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium, (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability.  相似文献   

11.
In the present paper, a new system of purpose built landfill (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW), by considering all favourable conditions for improved methane generation in tropical climates. Based on certain theoretical considerations multivariate functional models (MFMs) are developed to estimate methane mitigation and energy generating potential of the proposed system. Comparison was made between the existing waste management system and proposed PBLF system. It has been found that the proposed methodology not only controlled methane emissions to the atmosphere but also could yield considerable energy in terms of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost of waste disposal in conventional as well as PBLF systems. In a case study of MSW management in Mumbai (INDIA), it was found that the unit cost of waste disposal with PBLF system is seven times lesser than that of the conventional waste management system. The proposed system showed promising energy generation potential with production of methane worth of Rs. 244 millions/y ($5.2 million/y). Thus, the new waste management methodology could give an adaptable solution for the conflict between development, environmental degradation and natural resources depletion.  相似文献   

12.
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.  相似文献   

13.
An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the ‘fuel from waste’ so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing ‘fuel from waste’ market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the ‘fuel from waste’ in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.  相似文献   

14.
Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance.The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85–174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010).The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.  相似文献   

15.
The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.  相似文献   

16.
Modelling municipal solid waste generation: a review   总被引:1,自引:0,他引:1  
The objective of this paper is to review previously published models of municipal solid waste generation and to propose an implementation guideline which will provide a compromise between information gain and cost-efficient model development. The 45 modelling approaches identified in a systematic literature review aim at explaining or estimating the present or future waste generation using economic, socio-demographic or management-orientated data. A classification was developed in order to categorise these highly heterogeneous models according to the following criteria--the regional scale, the modelled waste streams, the hypothesised independent variables and the modelling method. A procedural practice guideline was derived from a discussion of the underlying models in order to propose beneficial design options concerning regional sampling (i.e., number and size of observed areas), waste stream definition and investigation, selection of independent variables and model validation procedures. The practical application of the findings was demonstrated with two case studies performed on different regional scales, i.e., on a household and on a city level. The findings of this review are finally summarised in the form of a relevance tree for methodology selection.  相似文献   

17.
Due to initiatives such as the clean development mechanism (CDM), reducing greenhouse gas emissions for a developing country can offer an important route to attracting investment in a variety of qualifying project areas, including waste management. To date CDM projects have been largely confined to schemes that control emission from landfill, but projects that avoid landfilling are beginning to be submitted. In considering the waste options which might be suitable for developing countries certain ones, such as energy from waste, have been discounted for a range of reasons related primarily to the lack of technical and other support services required for these more sophisticated process trains. The paper focuses on six options: the base case of open dumping; three options for landfill (passive venting, gas capture with flaring, and gas capture with energy production), composting and anaerobic digestion with electricity production and composting of the digestate. A range of assumptions were necessary for making the comparisons based on the effective carbon emissions, and these assumptions will change from project to project. The highest impact in terms of carbon emissions was from using a sanitary landfill without either gas flaring or electricity production; this was worse than the baseline case using open dumpsites. Landfills with either flaring or energy production from the collected gas both produced similar positive carbon emissions, but these were substantially lower than both open dumping and sanitary landfill without flaring or energy production. Composting or anaerobic digestion with energy production and composting of the digestate were the two best options with composting being neutral in terms of carbon emissions and anaerobic digestion being carbon negative. These generic conclusions were tested for sensitivity by modifying the input waste composition and were found to be robust, suggesting that subject to local study to confirm assumptions made, the opportunity for developing CDM projects to attract investment to improved waste management infrastructure is significant. Kyoto credits in excess of 1 tCO2e/t of waste could be realised.  相似文献   

18.
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.  相似文献   

19.
A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.  相似文献   

20.
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency.Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases.For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables.The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号