首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过室内模拟培养实验,探讨了甘蔗渣修复铬污染土壤的效果、土壤中六价铬初始浓度和甘蔗渣添加量对六价铬还原反应一级动力学的影响、微生物对甘蔗渣修复铬污染土壤效果的影响及甘蔗渣修复铬污染土壤的机理。结果表明,甘蔗渣能有效地降低污染土壤中铬的浸出毒性和去除土壤中的六价铬。当甘蔗渣的添加量为5%,六价铬浓度低于1 740 mg·kg-1时,培养70 d内,土壤样品的浸出液中六价铬未检出,培养90 d内,土壤中六价铬的去除率趋近100%。土壤中六价铬的还原反应速率随六价铬初始浓度的增加而减小,随甘蔗渣添加量的增加而增大。同时,灭菌和未灭菌条件下,甘蔗渣对铬污染土壤的修复效果差异性不显著。甘蔗渣修复铬污染土壤的机理可能是甘蔗渣中的蔗糖和纤维素先降解生成葡萄糖和果糖,接着葡萄糖和果糖将土壤中的六价铬还原成三价铬。  相似文献   

2.

This article presents the results of investigations carried out to evaluate the improvement in combustion, performance, and emission characteristics of a diesel engine fueled with neat petro-diesel (PD), soybean biodiesel (SB), and 50% SB blended PD (PD50SB) by using carbon nanotube (CNT) as an additive. The acid–alkaline-based transesterification process with sodium hydroxide (NaOH) as a catalyst was applied to derive the methyl ester of SB. A mass fraction of 100 ppm CNT nanoparticle was blended with base fuels by using an ultrasonicator and the physiochemical properties were measured based on EN standards. The measured physiochemical properties are in good agreement with standard limits. The experimental evaluations were carried out under varying brake mean effective pressure (BMEP) conditions in a single-cylinder, four-stroke, and natural aspirated research diesel engine at a constant speed of 1500 rpm. The results reveal that the SB and its blend promote shorter ignition delay period (IDP) that is resulting in lower in-cylinder pressure (ICP) and net heat release rate (NHR) compared to PD. The SB and its blend increase the brake specific fuel consumption (BSFC), and reduce the brake specific energy consumption (BSEC) and exhaust gas temperature (EGT), due to lower heating value, and efficient combustion, respectively. As far as the emission characteristics are concerned, the SB and its blend promote lower magnitude of hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), and smoke emissions compared to PD except for oxides of nitrogen (NOx) emission. The CNT nanoparticle inclusion with base fuels significantly improves the combustion, performance, and emissions level irrespective of engine load conditions.

  相似文献   

3.
Wind-driven rain (WDR) is an important factor in the dry and wet deposition of atmospheric pollutants on building facades. In the past, different calculation models for WDR deposition on building facades have been developed and progressively improved. Today, the models that are most advanced and most frequently used are the semi-empirical model in the ISO Standard for WDR assessment (ISO), the semi-empirical model by Straube and Burnett (SB) and the CFD model by Choi. This paper compares the three models by applying them to four idealised buildings under steady-state conditions of wind and rain. In each case, the reference wind direction is perpendicular to the windward facade. For the CFD model, validation of wind-flow patterns and WDR deposition fluxes was performed in earlier studies. The CFD results are therefore considered as the reference case and the performance of the two semi-empirical models is evaluated by comparison with the CFD results based on two criteria: (1) ability to model the wind-blocking effect on the WDR coefficient; and (2) ability to model the variation of the WDR coefficient with horizontal rainfall intensity Rh. It is shown that both the ISO and SB model, as opposed to the CFD model, cannot reproduce the wind-blocking effect. The ISO model incorrectly provides WDR coefficients that are independent of Rh, while the SB model shows a dependency that is opposite to that by CFD. In addition, the SB model can provide very large overestimations of the WDR deposition fluxes at the top and side edges of buildings (up to more than a factor 5). The capabilities and deficiencies of the ISO and SB model, as identified in this paper, should be considered when applying these models for WDR deposition calculations. The results in this paper will be used for improvement and further development of these models.  相似文献   

4.
Sánchez L  Romero E  Peña A 《Chemosphere》2003,53(8):843-850
Packed columns were prepared with an agricultural soil to examine the ability of two organic soil modifiers, biosolid and the cationic surfactant tetradecyl trimethyl ammonium bromide (TDTMA), to alter the leaching of the insecticide methidathion. Ion chloride was used as a tracer of water flow and the mathematical model PESCOL was selected to predict the mobility of the insecticide. The biosolid addition (SB column) delayed the breakthrough curves for methidathion with respect to the non-amended soil (S) column. The cationic surfactant TDTMA, alone or combined with the biosolid (SS and SBS) and previously incorporated in the soil column, caused the highest retardation of this pesticide in the soil columns. Theoretical retardation factors (TRf) were similar to the experimental Rf values for the S and SB columns, and predicted the high retention observed in the SBS and SS columns. The simulation with PESCOL predicted the experimental results.  相似文献   

5.
This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.  相似文献   

6.
In order to better understand the relationship between soil characteristics and mobility of some heavy metals, correlation studies were conducted in samples of unlimed and limed A, B and C horizons of three Brazilian soils, representative of the majority of the tropical soils. A number of chemical and mineralogical characteristics of one Oxisol and two Ultisols were related to the retardation factors (Rf) for zinc (Zn), cadmium (Cd), copper (Cu) and lead (Pb). The retardation factors, obtained in leaching column experiments, were used as an estimate of solute movement in the profile. Soil types and soil horizons were found to influence metal retardation factors which, in turn, correlated better with the chemical than the mineralogical soil characteristics. For the unlimed soil samples, the soil characteristics that significantly correlated with Zn-Rf and Cd-Rf were the sum of exchangeable bases (SB), and soil exchangeable (Ca-KCl) and non-exchangeable (Ca-HCl) calcium contents. These results showed the strong influence of the cation exchange phenomenon on the retention and mobility of these two metals. For Cu and Pb, not only SB, cation exchange capacity (CEC) and Ca-KCl and Ca-HCl but also the organic matter correlated well with the Rf, showing that complex or chelate formation may play an important role in the movement of these elements. The important soil chemical characteristics related to the retardation factors in the limed soil samples were SB for Cd, and Ca-HCl for Cu and Pb, suggesting that precipitation may also influence the mobility and retention of the latter two heavy metals in these soil samples. Soil pH influenced the heavy metals adsorption and movement as shown by the significant correlation with the retardation factors when the combined data for the unlimed and limed soil samples was considered.  相似文献   

7.
The effectiveness of two microbiologically treated agrowastes [dry olive cake (DOC) and/or sugar beet (SB)] on plant growth, soil enzymatic activities and other soil characteristics was determined in a natural soil from a desertified area. Dorycnium pentaphyllum, a legume plant adapted to stress situations, was the test plant to evaluate the effect of inoculation of native arbuscular mycorrhizal (AM) fungi and/or Yarowia lipolytica (a dry soil adapted yeast) on amended and non-amended soils. Plant growth and nutrition, symbiotic developments and soil enzymatic activities were limited in non-amended soil where microbial inoculations did not improve plant development. The lack of nodules formation and AM colonization can explain the limited plant growth in this natural soil. The effectiveness and performance of inocula applied was only evident in amended soils. AM colonization and spores number in natural soil were increased by amendments and the inoculation with Y. lipolytica promoted this value. The effect of the inoculations on plant N-acquisition was only important in AM-inoculated plants growing in SB medium. Enzymatic activities as urease and protease activities were particularly increased in DOC amended soil meanwhile dehydrogenase activity was greatest in treatments inoculated with Y. lipolytica in SB added soil. The biological activities in rhizosphere of agrowaste amended soil, used as indices of changes in soil properties and fertility, were affected not only by the nature of amendments but also by the inoculant applied. All these results show that the lignocellulosic agrowastes treated with a selected microorganism and its further interaction with beneficial microbial groups (native AM fungi and/or Y. lipolytica) is a useful tool to modify soil physico-chemical, biological and fertility properties that enhance the plant performance probably by making nutrients more available to plants.  相似文献   

8.
The potential adverse health effects of PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT)- and dihydrobenzoic acid (DHBA)-based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities, with higher levels in the winter, whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest that the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed, with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor-phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air.

Implications:?PM2.5 and its corresponding vapor phase, containing semivolatile organics, were collected in three communities in the Los Angeles Basin and examined with toxicologically relevant chemical assays. The PM2.5 phase contained most of the prooxidants and the vapor phase contained most of the electrophiles, whose content was highest in summer samples from a receptor site that reflected greater photochemical processing of the air parcel during its transport. As electrophiles initiate both adverse and adaptive responses to foreign substances by biological systems, their presence in the vapor phase emphasizes the importance of this phase in the overall health effects of ambient air.  相似文献   

9.
王学华  黄勇  王浩 《环境工程学报》2014,8(9):3773-3777
采用UASB反应器+三段好氧+混凝沉淀组合工艺处理印染工业园废水,对污泥减量化进行探索。结果表明,工程运行中,通过控制运行参数、以及运用UASB水解酸化反应器及生物捕食技术,在出水稳定在《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准时,该系统处理每吨污水污泥产量为1 046 g。  相似文献   

10.

Low-density polyethylene (LDPE), biaxially oriented polypropylene (BOPP), and expanded polystyrene (EXPS) are the most common plastics found in every home of the world, but only ~ 10% enter the recycling chains. Consequently, the study of plastic biodegradation by microorganisms and insects, such as the wax moths, has gained special interest. Galleria mellonella (L.) has been shown to consume single-layered polyethylene and polystyrene, though biological impacts of this consumption have been rarely reported. We evaluated the consumption of different plastics by G. mellonella larvae (L7, mean size: 25–30 mm) and its effect on larval duration, survival, and development. For this, we offered the larvae five diets: single-layered LDPE, EXPS, BOPP, triple-layered polyethylene (SB, for silo-bags), and a control with beeswax. We recorded the state and weight of the materials and the state of larvae until they reached the adult stage. Larvae consumed more PE (both LDPE and SB) and EXPS than BOPP; still, they were able to emerge as adults in all treatments. Larvae that consumed plastics turned into pupal stage faster than those that consumed beeswax, regardless of the type and amount of plastic consumed. This is the first report of wild G. mellonella larvae in Argentina consuming biaxially polypropylene and silo-bags.

  相似文献   

11.
Wang G  Huang L  Gao S  Gao S  Wang L 《Chemosphere》2002,48(7):689-695
Measurement of PM10 and PM2.5 was carried out at six sites of Nanjing, China in the period of February-May 2001. The pH and conductivity of water-soluble matter of PM10 and PM2.5 were determined, and the samples were analyzed for total carbon (TC), organic carbon (OC) and inorganic carbon (IC) of the water-soluble fraction. The distribution of aerosol mass concentration in size was also measured at one site SB by a nine-stage impactor followed to assess the pulmonary deposition of particles in different tracts of the human respiratory system. Compared with National Ambient Air Quality Standard (NAAQS) of the USA, the level of PM10 and PM2.5 in Nanjing was much higher. Especially for site SY, the average particle mass concentrations (774.5 micrograms/m3 for PM10 and 481.4 micrograms/m3 for PM2.5) were more than five times the NAAQS standard. At site SB aerosol mass distribution in size had shown the similar characteristics with accumulation (Dp < 1 micron) and coarse (Dp > 1 micron) modes. More than 70% of total suspended particles is of a size that they are deposited in the respiratory tract below trachea, whereas about 22% of the mass is respirable and will reach the alveoli. Water-soluble fractions of PM10 and PM2.5 in Nanjing are acidic, and the pH of PM2.5 is lower than that of PM10. OC makes up the majority of TC and accounts for 3-14% of mass concentration of PM10 and/or PM2.5, while IC only accounts for 0.1-0.5% of PM10 and/or PM2.5 mass.  相似文献   

12.
The acute toxicity (96 h) of pyrene (PY) to European seabass (Dicentrachus labrax) juveniles assessed in a semi-static bioassay (SSB) with medium renewal at each 12 h, and in a static bioassay (SB) without medium renewal was compared in laboratorial conditions (water PY concentrations: 0.07-10 mg L−1). Main findings in the SSB that assessed mainly the toxicity of PY and its metabolites were: increased levels of bile PY metabolites in good agreement with the profile of lipid peroxidation levels (LPO) in exposed fish relating PY exposure and oxidative damage; increased levels of PY-type compounds in the brain indicating their ability to cross the blood-brain barrier; increased levels of these substances in liver and muscle which are edible tissues for humans thus raising concern on potential adverse effects on consumers of fish from PY contaminated areas; a significant inhibition of glutathione S-transferase activity suggesting its involvement in PY detoxication as toxicant scavenger; finally, an almost complete impairment of the swimming velocity at all the PY concentrations linking sub-individual to higher population level effects. In the SB, where the overall toxicity of PY, its metabolites and environmental degradation products was evaluated, 19% and 79% of PY decay in test media was found at 12 and 96 h, respectively. In general, the effects were similar to those of SSB but with significant effects being induced at higher PY concentrations indicating that the parental compound is more toxic than its environmental degradation products. The other main differences relatively to the SSB were: increased levels of PY-type substances in the liver suggesting more accumulation in this organ. Therefore, these findings highlight the need of carefully considering experimental design options when assessing the toxicity of readily degradable substances to marine fish, and stress the importance of taking into consideration the toxicity of environmental degradation products in addition to toxic effects of the parental substance and its metabolites for marine ecological risk assessment.  相似文献   

13.

Fine particle matters (PM2.5) is a well-known risk factor for cardiovascular diseases. However, the underlying molecular mechanisms are largely unknown. Vascular hyper-reactivity plays an important roles in the pathogenesis of cardiovascular diseases. The present study was designed to investigate a hypothesis that PM2.5 up-regulated endothelin receptors in mesenteric artery and the potential underlying mechanisms. Rat mesenteric arteries were cultured with PM2.5. The artery contractile responses were recorded by a sensitive myograph. ETB and ETA receptor expressions of mRNA and protein were assessed by quantitative real-time PCR, Western blotting, and immunohistochemistry, respectively. Results showed that ETB receptor agonist, sarafotoxin 6c induced a negligible contraction in fresh artery segments, while ETA receptor agonist, ET-1 induced an obvious contraction. After organ culture, the contraction curve mediated by ETB and ETA receptors were shifted toward the left. PM2.5 1.0 μg/ml cultured for 16 h further enhanced ETB and ETA receptor-mediated contractile responses with a markedly increased maximal contraction. The organ culture enhanced ETB and ETA receptor mRNA and protein levels from fresh arteries, which were further increased by PM2.5. The U0126 (MEK/ERK1/2 inhibitor) and SB203580 (p38 inhibitor) significantly attenuated both organ cultured-induced and PM2.5-induced up-regulation of ETB receptor. U0126 also suppressed organ culture-increased and PM2.5-increased expressions of ETA receptor. SB203580 only suppressed PM2.5-induced enhanced expressions of ETA receptor In conclusion, airborne PM2.5 up-regulates ETB and ETA receptors of mesenteric artery via p38 MAPK and MEK/ERK1/2 MAPK pathways.

  相似文献   

14.
We previously demonstrated that Cyanobacteria-derived microcystin-LR (MCLR) is able to induce cognitive dysfunction, but the mechanism is not understood. Long-term potential (LTP) in hippocampus is regarded as an important cellular mechanism of learning and memory. Here, the aim of this study was to evaluate the role of MCLR in LTP of hippocampal dentate gyrus (DG) by in vivo electrophysiological recording. We found that MCLR could suppress the induction of LTP in rat hippocampus, whereas simultaneous inhibition of glycogen synthase kinase-3β (GSK-3β) by LiCl or SB216763 attenuated the LTP impairments by MCLR. Furthermore, a decrease of the phosphorylated level at Ser9 of GSK-3β was observed by western blotting after intracerebroventricular (ICV) injection of MCLR, indicating GSK-3β was activated by MCLR. In addition, we showed that ICV administration of MCLR slightly stimulated activity of protein phosphatases (PPs) in the brain, which might activate GSK-3β via dephosphorylation of Ser9 site. Taken together, these findings demonstrated that GSK-3β plays a crucial role in regulating MCLR-induced cognitive deficit.  相似文献   

15.
ABSTRACT

Emissions levels from current gasoline spark-ignited engines are low, and emissions changes associated with the blending of ethanol into gasoline are small and difficult to quantify. Addition of ethanol, with a high blending octane number, allows a reduction in aromatics in market gasoline. Blending behavior of ethanol is nonlinear, altering the distillation curve, including the 50% temperature point, T50. Increase in gasoline direct injection (GDI) engine technology in the fleet challenges ability of older models based on port fuel injection (PFI) results to predict the overall air quality impact of ethanol blending. Five different models derived from data collected through U.S. Environmental Protection Agency Energy Policy Act (EPAct) programs were used to predict LA92 Phase 1 particulate matter (PM) emissions for summer regular (SR) E0 (gasoline with 0% ethanol by volume), E10 (gasoline with 10% ethanol) and E15 (gasoline with 15% ethanol). Substantial reductions of PM for E10 and E15 relative to E0 were predicted when aromatics were displaced by ethanol to maintain octane rating. SR E0 and E10 were also matched to linear combinations of EPAct fuels and results showed a 35% PM reduction for SR E10 relative to SR E0. For GDI vehicles the Coordinating Research Council (CRC) E-94-3 study found that E10 had 23% or 29% PM increase. However, CRC E-129 found an E10 PM reduction of 10% when one E0 fuel and its splash blended (SB) E10 were compared. Both CRC project E-129 SB data and fuel triplets selected from the EPAct study showed variation for E15 emissions, although E-129 suggests that E15 in GDI offers about a 25% reduction of PM with respect to E0. Overall, data suggest that ethanol blending offers a modest to a substantial reduction of cold-start PM mass if aromatic levels of the finished products are reduced in response to ethanol addition.

Implications: Studies of exhaust emissions effects of ethanol blending with gasoline vary in conclusions. Blending properties are nonlinear. Modeling of real-world emissions effects must consider all fuel composition adjustments and property changes associated with ethanol addition. Aromatics are reduced in E10 or E15, compared with E0, and distillation changes. PFI-derived models show reductions in cold-start PM for expected average E10 versus E0 pump fuel, due to reduced aromatic content. Relative emissions effects from older technology (PFI) engines do not predict newer engine (GDI) results reliably, but recent GDI data show reduced cold-start PM when ethanol displaces aromatics.  相似文献   

16.
Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is considered as a neurotoxicant to mammalian species. However, the underlying mechanism of its neurotoxicity is largely unknown. In the present study, we examined roles of mitogen-activated protein kinases (MAPKs) in PFOS-induced apoptosis of neuronal cells to elucidate the molecular mechanism. Cerebellar granule cells were isolated from 7-d old rats and maintained in culture for additional 7 d. Cells were exposed to PFOS and caspase-3 activity and nuclear morphology were evaluated by enzyme activity assay and Hoechst 33342 staining, respectively, to determine its effects on apoptosis. The treatment with PFOS resulted in caspase-3 activation and nuclear condensation and fragmentation. PFOS exposure selectively increased activation of ERK that remained above control over 6 h. The inhibitor of ERK pathway, PD98059, substantially blocked caspase-3 activation induced by PFOS, whereas inhibitors of JNK and p38 MAPK, SP600125 and SB203580, respectively, had no effect. PKC inhibitors, bisindolylmaleimide I and Gö6976, dampened caspase-3 activity and ERK activation induced by PFOS. Collectively, it is suggested that PKC and ERK play proapoptotic roles in PFOS-induced apoptosis of cerebellar granule cells and PKC act as an upstream regulator of ERK activation.  相似文献   

17.
常温部分亚硝化/厌氧氨氧化(partial nitritation/anammox,PN/A)颗粒污泥中不同功能菌群对温度的响应机制不同,在低温条件下易导致脱氮系统失衡。为此,探讨PN/A颗粒污泥系统在温度冲击下的应激效应,包括脱氮性能、微生物活性和EPS对温度冲击的响应,并考察了温度冲击后系统性能恢复的可行性 。结果表明: PN/A颗粒污泥在25~30 ℃时脱氮性能最佳,平均总氮去除率可达到73.48%;低温冲击会抑制PN/A的脱氮性能,温度越低,其对总氮去除率影响越大,12 ℃以下的低温冲击导致平均总氮去除率下降至40.6%,且即使温度回升至30 ℃,平均总氮去除率只能恢复至66.27%。SGompertz模型可有效拟合温度与系统总氮去除负荷以及温度降幅与总氮去除负荷变化的关系,拟合所得可决系数R2均在0.995以上。通过分析温度对微生物活性影响发现,温度对PN/A颗粒污泥中 AOB、AnAOB以及NOB菌群活性影响不同,AnAOB对低温更加敏感。在12 ℃和7 ℃时,总氮比降解速率q(TN) 分别为0.40 mg·(g·h)−1和0.74 mg·(g·h)−1,相对于30 ℃时,q(TN)下降了93.42%和87.83%。在20~30 ℃时,EPS总量和TB、LB、SB组分基本稳定,温度降至 12 ℃以下,EPS总量及各组分均会大幅增加。EEM检测结果表明,低温可刺激TB-EPS分泌更多色氨酸类蛋白质。  相似文献   

18.
Biopesticides are usually sprayed on forests by using planes made up of aluminum alloy. Bioval derived from starch industry wastewater (SIW) in suspension form was developed as stable anticorrosive biopesticide formulation. In this context, various anticorrosion agents such as activated charcoal, glycerin, ethylene glycol, phytic acid, castor oil and potassium silicate were tested as anticorrosive agents. There was no corrosion found in Bioval formulation where potassium silicate (0.5% w/v) was added and compared with Foray 76 B, as an industrial standard, when stored over 6 months. In relation to other parameters, the anticorrosion formulation of Bioval+buffer+KSi reported excellent zeta potential (?33.19 ± 4 mV) and the viscosity (319.13 ± 32 mPa.s) proving it's stability over 6 months, compared to the standard biopesticide Foray 76 B (?36.62 ± 4 mV potential zeta, pH 4.14 ± 0.1 and 206 ± 21 mPa.s viscosity). Metal analysis of the different biopesticides showed that Bioval+buffer+KSi has no corrosion (5.11 ± 0.5 mg kg?1 of Al and 13.53 ± 1.5 mg kg?1 of Fe) on the aluminum alloy due to the contribution of sodium acetate buffer at pH 5. The bioassays reported excellent results for Bioval+Buffer+KSi (2.95 ± 0.3 × 109 CFU mL?1 spores and 26.6 ± 2.7 × 109 IU L?1 Tx) compared with initial Bioval (2.46 ± 0.3 × 109 CFU mL?1 spores and 23.09 ± 3 × 109 IU L?1 Tx) and Foray 76 B (2.3 ± 0.2 × 109 CFU mL?1 spores and 19.950 ± 2.1 UI L?1 Tx) which was due to the break-up of the external chitinous membrane due to abrasive action of potassium silicate after ingestion by insects. The contribution of sodium acetate buffer and potassium silicate (0.5% and at pH = 5) as anticorrosion agent in the Bioval allowed production of an efficient biopesticide with a reduced viscosity and favorable pH as compared to Foray 76 B which enhanced the entomotoxic potential against spruce budworm (SB) larvae (Lepidoptera: Choristoneura fumiferana).  相似文献   

19.
基于情景分析法预测了2020、2030年不同情景下的中国能源消费量,按不同部门、不同燃料类型的SO2、NOx排放因子和去除率,预测了2020和2030年不同情景下的中国SO2和NOx排放量。根据计算结果,2020和2030年基准能源与市场情景、政策能源与市场情景和强化政策能源与市场管理情景的SO2和NOx排放量依次减小;相比于基准能源与市场情景,强化政策能源与市场管理情景下2020和2030年SO2排放量分别减少了651.66和846.55万t,NOx排放量分别减少了409.61和692.76万t。燃煤火电厂、工业和交通部门对SO2和NOx排放量的贡献最大,重点加强这3个经济部门的污染控制,可有效降低污染物的排放量。  相似文献   

20.
Climate change is projected to cause significant alterations to aquatic biogeochemical processes, (including carbon dynamics), aquatic food web structure, dynamics and biodiversity, primary and secondary production; and, affect the range, distribution and habitat quality/quantity of aquatic mammals and waterfowl. Projected enhanced permafrost thawing is very likely to increase nutrient, sediment, and carbon loadings to aquatic systems, resulting in both positive and negative effects on freshwater chemistry. Nutrient and carbon enrichment will enhance nutrient cycling and productivity, and alter the generation and consumption of carbon-based trace gases. Consequently, the status of aquatic ecosystems as carbon sinks or sources is very likely to change. Climate change will also very likely affect the biodiversity of freshwater ecosystems across most of the Arctic. The magnitude, extent, and duration of the impacts and responses will be system- and location-dependent. Projected effects on aquatic mammals and waterfowl include altered migration routes and timing; a possible increase in the incidence of mortality and decreased growth and productivity from disease and/or parasites; and, probable changes in habitat suitability and timing of availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号