首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

2.
石油污染土壤的植物与微生物修复技术   总被引:20,自引:3,他引:20  
石油污染土壤的生物修复技术具有成本低、简便高效、对环境影响小等优点,正逐步成为石油污染治理研究的热点领域,具有广阔的发展前景.介绍了我国的石油污染概况及生物修复技术在石油污染治理中的应用,重点对石油污染土壤的微生物修复、植物修复、植物一微生物联合修复技术的研究进展及各自的优点、局限性进行了综述,并提出了石油污染土壤生物修复技术研究的重点领域.  相似文献   

3.
Degradation of toxaphene in soil from both newly contaminated (from Sweden) and aged spills (from Nicaragua) were studied. The newly contaminated soil contained approximately 11 mg kg(-1) toxaphene while the aged Nicaraguan soil contained approximately 100 mg kg(-1). Degradation was studied in anaerobic bioreactors, some of which were supplied with lactic acid and others with Triton X-114. In this study we found that the lower isomers Parlar 11, 12 were degraded while the concentration of isomer Parlar 15 increased. This supported an earlier evaluation which indicated that less chlorinated isomers are formed from more heavily isomers. Lactic acid when added to the soil, interfere with the degradation of toxaphene. Lactic acid was added; several isomers appeared to degrade rather slowly in newly contaminated Swedish soil. The Swedish soil, without any external carbon source, showed the slowest degradation rate of all the compounds studied. When Triton X-114 at 0.4 mM was added, the degradation rate of the compounds increased. This study illustrates that biodegradation of toxaphene is a complex process and several parameters have to be taken into consideration. Degradation of persistent pollutants in the environment using biotechnology is dependent on bioavailability, carbon sources and formation of metabolites.  相似文献   

4.
This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.  相似文献   

5.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

6.
Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76–94 % of the total petroleum hydrocarbons including 25 alkanes (C11–C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol–water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 105 mg kg?1 in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.  相似文献   

7.
通过富集和驯化培养从石油污染的土样中筛选出一株高效石油烃降解菌Y-16,其对胜利原油7 d降解率达到51.98%。在好氧条件下,对Y-16菌株的最优降解条件进行了探索,结果表明,在pH值8.0,温度30℃,接种量10%,摇床转数160 r/m in和3 000~7 000 mg/L的底物浓度下,Y-16菌株的最高降解率可达到60.34%。通过Y-16菌株对石油烃降解规律的探索,发现Y-16菌株对石油烃的降解符合一级反应动力学模型。  相似文献   

8.
In this study, the bioaccessibility of petroleum hydrocarbons in aged contaminated soils (1.6-67gkg(-1)) was assessed using four non-exhaustive extraction techniques (100% 1-butanol, 100% 1-propanol, 50% 1-propanol in water and hydroxypropyl-β-cyclodextrin) and the persulfate oxidation method. Using linear regression analysis, residual hydrocarbon concentrations following bioaccessibility assessment were compared to residual hydrocarbon concentrations following biodegradation in laboratory-scale microcosms in order to determine whether bioaccessibility assays can predict the endpoint of hydrocarbon biodegradation. The relationship between residual hydrocarbon concentrations following microcosm biodegradation and bioaccessibility assessment was linear (r(2)=0.71-0.97) indicating that bioaccessibility assays have the potential to predict the extent of hydrocarbon biodegradation. However, the slope of best fit varied depending on the hydrocarbon fractional range assessed. For the C(10)-C(14) hydrocarbon fraction, the slope of best fit ranged from 0.12 to 0.27 indicating that the non-exhaustive or persulfate oxidation methods removed 3.5-8 times more hydrocarbons than biodegradation. Conversely, for the higher molecular weight hydrocarbon fractions (C(29)-C(36) and C(37)-C(40)), biodegradation removed up to 3.3 times more hydrocarbons compared to bioaccessibility assays with the resulting slope of best fit ranging from 1.0-1.9 to 2.0-3.3 respectively. For mid-range hydrocarbons (C(15)-C(28)), a slope of approximately one was obtained indicating that C(15)-C(28) hydrocarbon removal by these bioaccessibility assays may approximate the extent of biodegradation. While this study demonstrates the potential of predicting biodegradation endpoints using bioaccessibility assays, limitations of the study include a small data set and that all soils were collected from a single site, presumably resulting from a single contamination source. Further evaluation and validation is required using soils from a range of hydrocarbon contamination sources in order to develop robust assays for predicting bioremediation endpoints in the field.  相似文献   

9.
C Taylor  T Viraraghavan 《Chemosphere》1999,39(10):1583-1593
A bench-scale investigation (soil pan testing) was conducted with the objective of studying degradation rates of diesel contaminated soil (2500 and 10,000 ppm by weight of total petroleum hydrocarbons (TPH) to dry weight of soil) under different treatment conditions over a 17 week testing period. The greatest degradation of the diesel contaminated soil was obtained with the addition of nutrients (Co = 10,000 ppm of TPH; k = 0.19 week-1). 'k' for soil not amended with nutrients was 0.07 week-1. The control cell (C0 = 2500 ppm TPH), with sodium azide (to suppress degradation) was compared with an experimental cell of 2500 ppm initial concentration of TPH without nutrient amendment. The control cell exhibited a relatively low uniform degradation (k = 0.08 week-1) of TPH over the duration of the experiment with reasonable first-order kinetic regression statistics.  相似文献   

10.
生物炭作为一种绿色环保的功能材料因其在污水处理和污染土壤修复方面具有显著效果而受到极大关注。采用红外光谱、元素分析仪及微孔分析对不同温度(200、300、400、500和600℃)条件下制备的木屑和麦秆生物炭进行特性表征,并采用制备的生物炭净化石油污染土壤,分别考察了污染物性质、生物质原料和热解温度对其净化效果的影响。结果表明,随着热解温度的增高,生物炭芳香化程度增加,极性降低,微孔结构逐渐发育,表面积增大。加入生物炭33 d后,污染土壤中总石油烃及其组分烷烃的浓度比对照略有降低,而PAHs浓度下降显著。随着热解温度升高,2种生物炭对PAHs的吸附强度均逐渐增大,芳香度增高、表面积增大是强吸附的主要原因。2种生物炭在400℃及以下温度制备时对PAHs的吸附强度为:木屑生物炭 > 麦秆生物炭;而400℃以上温度制备的生物炭吸附强度则相反,即麦秆生物炭 > 木屑生物炭,说明生物炭原料对其吸附强度也具有显著影响。  相似文献   

11.
Yu DY  Kang N  Bae W  Banks MK 《Chemosphere》2007,66(5):799-807
Although alkanes are relatively less reactive to chemical oxidation compared to alkenes, the chemical oxidation of alkanes has not been adequately explored in the context of environmental remediation efforts. Laboratory-scale column experiments were therefore conducted with soil artificially contaminated by diesel fuel as a surrogate for alkanes of environmental relevance. Particular attention was paid to saturated hydrocarbons refractory to volatilization. Reaction conditions involve 1485mgkg(-1) of the initial concentration of diesel range organics (DRO) and a constant ozone concentration of 119+/-6mgl(-1) at the flow rate of 50mlmin(-1). The observed removal of DRO reached 94% over 14h of continuous ozone injection. Ozone oxidation demonstrated effective removal of non-volatile DRO in the range of C(12)-C(24). Each alkane compound displayed comparable degradation kinetics, suggesting virtually no selectivity of ozone reactions with alkanes in soil. A pseudo-first order kinetic model closely simulated the removal kinetics, yielding a reaction rate constant of 0.213 (+/-0.021)h(-1) and a half-life of 3.3 (+/-0.3)h under the experimental conditions used in this study. An estimate of ozone demand was 32mg of O(3) (mgDRO)(-1).  相似文献   

12.
分别以孤东油区石油污染土壤中的原油、柴油馏分(180~360℃)、蜡油馏分(360 ~ 500℃)为研究对象,采用BC-Ⅰ和BC-E 2种菌剂,对其进行微生物降解.研究表明,BC-Ⅰ和BC-E菌剂对石油污染土壤中石油烃的降解效果明显,BC-E菌剂对孤东油区石油污染土壤中石油烃的降解率达35.7%.2种菌剂对石油烃中轻馏分的降解效率均远远高于其对重馏分的降解效率.柴油馏分降解产物中鉴定出O1、O2、N1等多种分子类型,其中O2相对丰度远高于O1、N1类型,研究表明,该类化合物是脂肪酸,油样中脂肪酸存在明显的C16、C18优势,降解后低碳数脂肪酸相对丰度略有增加.蜡油(VGO)降解后以m/z=293(C19双环环烷酸)为中心正态分布,烷基咔唑中C5-咔唑丰度最高,苯并咔唑相对丰度很低.O2类化合物丰度很低,表明脂肪酸含量很低,DBE为4或5的O2类化合物明显占优势,对应3~4环环烷酸丰度较高.  相似文献   

13.
Mesocosm studies using sub-Antarctic soil artificially contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49 degrees 21' S, 70 degrees 13' E) in an attempt to evaluate the potential of a bioremediation approach in high latitude environments. All mesocosms were sampled on a regular basis over six months period. Soils responded positively to temperature increase from 4 degrees C to 20 degrees C, and to the addition of a commercial oleophilic fertilizer containing N and P. Both factors increased the hydrocarbon-degrading microbial abundance and total petroleum hydrocarbons (TPH) degradation. In general, alkanes were faster degraded than polyaromatic hydrocarbons (PAHs). After 180 days, total alkane losses of both oils reached 77-95% whereas total PAHs never exceeded 80% with optimal conditions at 10 degrees C and fertilizer added. Detailed analysis of naphthalenes, dibenzothiophenes, phenanthrenes, and pyrenes showed a clear decrease of their degradation rate as a function of the size of the PAH molecules. During the experiment there was only a slight decrease in the toxicity, whereas the concentration of TPH decreased significantly during the same time. The most significant reduction in toxicity occurred at 4 degrees C. Therefore, bioremediation of hydrocarbon-contaminated sub-Antarctic soil appears to be feasible, and various engineering strategies, such as heating or amending the soil can accelerate hydrocarbon degradation. However, the residual toxicity of contaminated soil remained drastically high before the desired cleanup is complete and it can represent a limiting factor in the bioremediation of sub-Antarctic soil.  相似文献   

14.
针对土壤中石油烃污染的脱附,采用计算模拟方法对污染土壤颗粒的运动状态与脱附关系进行了研究。结果表明,颗粒中污染物的脱附效果与其运动状态有关,脱附效果由低至高排序为颗粒静止<直线运动<螺旋运动,且颗粒做螺旋运动对污染物的脱附较其他运动状态更为均匀;螺旋运动的脱附效果与旋向无关,但与运动圈数有关,单位时间内螺旋运动的圈数越多,颗粒的脱附效果越好。基于上述结果,设计了一种管式涡流结构以期实现颗粒的螺旋运动,实现了土壤颗粒中石油烃污染物的强化脱附。利用Fluent模拟了不同管式涡流结构的流体流动形态及颗粒运动轨迹,发现螺旋叶片的旋向能够调控颗粒的运动旋向,螺旋叶片的导程能够调控颗粒的运动圈数。  相似文献   

15.
16.
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil.  相似文献   

17.

Purpose  

Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium.  相似文献   

18.
水溶性巯基壳聚糖对污染土壤吸附态汞的解吸作用研究   总被引:1,自引:0,他引:1  
用两种巯基化试剂半胱氨酸(Cys)和硫代乙醇酸(Thi)与壳聚糖(CTS)反应,制备了两种水溶性巯基壳聚糖,即Cys-CTS和Thi-CTS,对比研究了这两种巯基壳聚糖与CTS对被染毒土壤中吸附态汞的提取能力.结果表明,Thi-CTS在pH=3、质量浓度为0.5g/L、用量为20 mL的条件下.对汞的提取率为59.44%,相同条件下CTS和cys-CTS对汞的最高提取率只有31.81%和10.15%.  相似文献   

19.
Building facades can be equipped with biocides to prevent formation of algal, fungal and bacterial films. Thus run-off waters may contain these highly active compounds. In this study, the removal of several groups of biocides from contaminated waters by means of an activated soil filter was studied.A technical scale activated vertical soil filter (biofilter) with different layers (peat, sand and gravel), was planted with reed (Phragmites australis) and used to study the removal rates and fate of hydrophilic to moderate hydrophobic (log Kow 1.8-4.4) biocides and biocide metabolites such as: Terbutryn, Cybutryn (Irgarol® 1051), Descyclopropyl-Cybutryn (Cybutryn and Terbutryn metabolite), Isoproturon, Diuron, and its metabolite Diuron-desmonomethyl, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone and Iodocarbamate (Iodocarb). Three experiments were performed: the first one (36 d) under low flow conditions (61 L m−2 d−1) reached removal rates between 82% and 100%. The second one was performed to study high flow conditions: During this experiment, water was added as a pulse to the filter system with a hydraulic load of 255 L m−2 within 5 min (retention time <1 h). During this experiment the removal rates of the compounds decreased drastically. For five compounds (Cybutryn, Descyclopropyl-Cybutryn, Diuron, Isoproturon, and Iodocarb) the removal dropped temporarily below 60%, while it was always above 70% for the others (Terbutryn, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone). However, this removal is a considerable improvement compared to direct discharge into surface waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer was responsible for most of the removal, the sand and gravel layers also contributed significantly for some compounds. All compounds are rather removed by degradation than by sorption.  相似文献   

20.
The relevance of germination trials for screening plants that may have potential for use in the phytoremediation of PAH contaminated land was evaluated. The germination and subsequent growth of 7 grass and legume species were evaluated in soil spiked with a pure PAH mixture or coal tar and soil from a former coking plant heavily contaminated with aged PAHs. None of these treatments adversely affected germination of the plants. However, apart from Lolium perenne all species exhibited reduced growth in the coking plant soil after 12 weeks growth when compared to the untreated soil. In the coal tar spiked soil 4 out of the 7 species showed reduced growth, as did 3 out of the 7 in the soil spiked with a mixture of 7 PAHs. Therefore, germination studies alone would not predict the success of subsequent growth of the species tested in the ranges of soil PAH levels studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号