首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent observations of air pollutant concentrations measured within and above street canyons were used to study the average vertical profiles of vehicular pollutant concentrations in the urban environment. The idea of an exponential vertical concentration distribution, exp( −Bzq), resulted from a near ground-level source diffusing over flat terrain, was tentatively extended to the urban street canyons, where the empirical parameters B and q are generally dependent on the atmospheric stability and the aerodynamic characteristics of the canyon.  相似文献   

2.
A validated LES model was employed to simulate the street canyons of aspect ratio (AR) 3, 5, and 10. Three, five, and eight vertically aligned primary recirculations were found for the three cases, respectively, which showed decreasing strength with decreasing height. The ground-level wind speeds were found to be very small, making it extremely difficult for the ground-level pollutants to disperse. Local maxima of turbulence intensities were found at the interfaces between the primary recirculations and the shear layer. The pollutant trajectory followed the primary recirculations. High pollutant concentration and variance were found near the buildings where wind flowed upward. Large gradients of pollutant concentration and variance were also observed at the interfaces between the primary recirculations and the shear layer. Detailed analyses of concentration budget showed that the advection terms were responsible for pollutant redistribution within primary recirculations, while the turbulent transport terms were responsible for pollutant penetration between primary recirculations as well as pollutant removal from the street canyon.  相似文献   

3.
The paper presents results from a case study of gaseous pollutant dispersion in street canyons. Tracer-gas experiments were performed in a neutrally stratified wind tunnel. Vehicle emissions were simulated as line sources. Concentration profiles along building walls were measured. A two-dimensional street canyon was considered as the reference case. The influence of systematic parameter variations on the concentration field is studied and discussed. Building dimensions, upwind building configuration, wind direction and roof geometry were found to be important parameters. Data sets from the study may be used for evaluation of numerical models and for expert estimates of air quality in the urban environment  相似文献   

4.
Volatile hydrocarbons (VHCs) were monitored in two urban street canyons for 16 days. Measurements of 15 selected VHCs were performed simultaneously at three different sampling heights: at street level (2 m), at 8 m, and at the rooftop (25 m above the ground). The aim of the study was to investigate the factors responsible for the horizontal and vertical changes in VHC concentrations. Physical parameters controlling the concentration gradients (wind flow and speed) were enabled. It was concluded that dilution and dispersion decrease the concentrations of HCs emitted at street level by approximately a factor of 6 between rooftop and street levels. Low winds and winds parallel to the street axis were identified as the worst dispersion conditions. The correlation between the measured VHC concentrations gave an insight into their fate. An empirical relationship between CO and benzene was established. These results may have important implications in planning monitoring studies to support research on population exposure in urban areas.  相似文献   

5.
孤立与非孤立城市街道峡谷内污染物扩散   总被引:2,自引:0,他引:2  
通过求解二维不可压N-S方程、k-ε方程及污染物对流扩散方程,模拟了孤立街道峡谷与非孤立街道峡谷内的流场及交通污染物浓度场.计算结果与风洞试验结果总体趋势一致.非孤立街道峡谷内污染物壁面浓度要大于孤立街道峡谷内的壁面浓度.通过计算街道峡谷建筑屋顶高度处的垂直方向污染物通量,说明了湍流扩散是污染物扩散出街道峡谷的主要原因,其污染物通量总为正,而平均流通量可以为负.非孤立街道峡谷由于平均流流动和湍流流动的总扩散通量减少,造成污染物在街道峡谷内集聚,从而理论上解释了非孤立街道峡谷与孤立街道峡谷污染扩散的差别.  相似文献   

6.
Total suspended particulate (TSP) measurements of the New York City atmosphere have in the past failed to exhibit meaningful seasonal patterns, despite the fact that there are known seasonal differences in the strengths of sources contributing to the TSP. It has been found that when the TSP measurements are normalized for the effects of wind speed and the height of the atmosphere mixing layer, pronounced seasonal differences are seen. Based on analysis of two years of data, it is seen that emissions are increased during the winter months, presumably by combustion of oil for space heating. This source evidently contributes an average of 40 per cent of the total suspended particulates during the winter and ca. 20–30 per cent of the annual average total suspended particulate.  相似文献   

7.
Personal exposure studies are crucial alongside microenvironment and ambient studies in order to get a better understanding of the health risks posed by fine particulate matter and carbon monoxide in the urban transport microenvironment and for making informed decisions to manage and reduce the health risks. Studies specifically assessing the PM2.5, ultrafine particle count and carbon monoxide personal exposure concentrations of adults in an urban transport microenvironment have steadily increased in number over the last decade. However, no recent collective summary is available, particularly one which also considers ultrafine particles; therefore, we present a review of the personal exposure concentration studies for the above named pollutants on different modes of surface transportation (walking, cycling, bus, car and taxi) in the urban transport microenvironment. Comparisons between personal exposure measurements and concentrations recorded at fixed monitoring sites are considered in addition to the factors influencing personal exposure in the transport microenvironment.In general, the exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes. Fixed monitoring stations were found to be relatively poor predictors of CO and PM2.5 exposure concentration levels experienced by individuals in the urban transport microenvironment. Although the mode of transport, traffic and meteorology parameters were commonly identified as significant factors influencing exposure concentrations to the different pollutants under examination, a large amount of the exposure concentration variation in the exposure studies remained unexplained.  相似文献   

8.
It is important to develop a general model to accurately simulate the air pollution in urban street areas. In this paper, the Operational Street Pollution Model (OSPM) initially developed in Denmark is tested with measured data from a relatively wide and open street in Beijing. Major factors influencing the dispersion, such as emission factors, stationary source emissions, and solar radiation, are analyzed. Results show that the model can reflect the basic dispersion pattern in the street but gives systematically higher concentrations. After modifications to estimate street-level wind speed in the model, performance is obviously improved.  相似文献   

9.
针对信号控制路段,采用非稳态k-ε湍流模型、组分输运方程进行非定常三维街道峡谷数值模拟,研究了三维街道峡谷内动态交通流下机动车污染物CO的时空扩散过程,并对比了含信号、不含信号的定常模拟结果。结果表明,(1)受信号控制及峡谷内流场影响,峡谷内污染物浓度呈现显著的时空不均匀性;(2)各路段背风面浓度值要大于迎风面,且背风面和迎风面浓度峰值均位于峡谷中部的人行横道区;(3)信号周期内人行横道区污染物浓度始终远高于峡谷内其他区域。在距离背风面建筑1 m的人行横道处污染物浓度可达 24.15 mg/m3,超过国家空气质量二级标准141.50%;(4)受信号控制影响,含信号控制街道峡谷污染物浓度高于不含信号控制路段,人行横道背风面污染物浓度是不含信号控制人行横道的3.5倍。  相似文献   

10.
Using the methodology of the ExternE Project of the European Commission, we have evaluated the damage costs of automotive air pollution by way of two case studies in France: a trip across Paris, and a trip from Paris to Lyon. This methodology involves an analysis of the impact pathways, starting with the emissions (e.g., g/km of particles from tailpipe), followed by local and regional dispersion (e.g., incremental μg/m3 of particles), calculation of the physical impacts using exposure-response functions (e.g., cases of respiratory hospital admissions), and finally multiplication by unit costs factors (e.g.,
  1. Download : Download full-size image
per hospital admission). Damages are aggregated over all affected receptors in Europe. In addition to the local and regional dispersion calculations carried out so far by ExternE, we also consider the increased microscale impacts due to the trapping of pollutants in street canyons, using numerical simulations with the FLUENT software. We have evaluated impacts to human health, agricultural crops and building materials, due to particles, NOx, CO, HC and CO2. Health impacts, especially reduced life expectancy, dominate in terms of cost. Damages for older cars (before 1997) range from 2 to 41 Euro cents/km, whereas for newer cars (since 1997), the range 1–9 Euro cents/km, and there is continuing progress in reducing the emissions further. In large cities, the particulate emissions of diesel cars lead to the highest damages, exceeding those of gasoline cars by a factor of 7. For cars before 1997 the order of magnitude of the damage costs is comparable to the price of gasoline, and the loss of life expectancy is comparable to that from traffic accidents.  相似文献   

11.
The ventilation and pollutant transport in a two-dimensional (2D) street canyon of building-height-to-street-width (aspect) ratio h/b = 1 under different unstable stratifications were examined. To characterize the combined wind-buoyancy-driven flow and pollutant transport at different Richardson number Ri, a computational fluid dynamics (CFD) model based on the Reynolds-averaged Navier–Stokes (RANS) equations with the Renormalization Group (RNG) k ? ε turbulence model was adopted. Unlike the isothermal condition, a secondary recirculation is initiated at the ground-level windward corner of the street canyon once the unstable stratification is switched on (Ri < 0). It traps the ground-level pollutant leading to elevated pollutant concentration there. As Ri further decreases, the enlarging secondary recirculation enables direct pollutant removal from its core to the shear layer that offsets the ground-level pollutant accumulation. The ventilation and pollutant removal performance under different unstable stratifications are compared by the air (ACH) and pollutant (PCH) exchange rates, and pollutant retention time (τ). Both the mean and turbulent components of ACH are found to increase with decreasing Ri, suggesting that unstable stratification promotes ventilation in street canyons. Moreover, the CFD results agree well with our theoretical model that ACH2 varies linearly with Ri. Turbulent transport originally dominates the pollutant removal under isothermal condition. However, progressive domination of pollutant removal by mean wind can be observed with decreasing stability (decreasing Ri from 0 to ?10.6). The critical value is estimated to be Ri = ?8, below which mean wind is the major pollutant removal carrier. Reduction in τ is also observed with decreasing Ri. Hence, in unstable stratification, pollutant resides shorter time in the street canyon compared with its isothermal counterpart, and the ventilation and pollutant removal are more favorable.  相似文献   

12.
This paper investigates the impacts of building facades and ground heating on the wind flow and pollutant transport in street canyons using the computational fluid dynamic (CFD) technique. Street canyons of H/W (H representing the building height and W the street width) varied from 0.1 to 2, which covered the basic flow regimes of skimming flow (H/W=1 or 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1), were examined in a series of sensitivity tests. Heating that occurred on different surfaces, including ground surface and building façades, posed considerable effects on the street canyon wind flow and pollutant transport compared with those under isothermal conditions. The CFD results showed that the mechanically induced wind flow and pollutant transport were complicated by the buoyancy under temperature stratification. Individual street canyons of different H/W and surface-heating scenarios exhibited their unique wind flow structure and pollutant transport behaviors. Two counter-rotating vortices were calculated in the street canyons of H/W=1, in which the zone of higher pollutant concentration under isothermal conditions was switched from the leeward side to the windward side. In the street canyon of H/W=2, the recirculating wind pattern was perturbed by surface heating that led to the development of either one primary vortex or three closely coupled vortices. Because of the complicated wind structure, the zones of higher pollutant concentration located either on the leeward or windward ground level were subjected to the surface-heating scenarios. Only two vortices were developed inside the street canyon of H/W=0.5. The large primary vortex, centered inside the street canyon, extended above the roof level of the street canyon. Meanwhile, a small secondary vortex was found at the ground-level windward corner whose size results as a function of surface-heating configurations. Finally, in the street canyon of H/W=0.1, an isolated clockwise-rotating vortex was developed beside the leeward building while the wind in the windward side blew in the prevailing wind direction. As a result, air pollutant emitted at the street centerline was unlikely to be carried into the leeward vortex. Instead, it was dispersed rapidly on the windward side before being removed from the street canyon.  相似文献   

13.
Environmental Science and Pollution Research - The present study deals with the bioaccumulation of heavy metals in different seagrass species (Syringodium isoetifolium, Halodule pinifolia,...  相似文献   

14.
Air samples collected from Porto Novo (11 degrees 29' N, 79 degrees 46' E), Tamil Nadu State, South India from December, 1987 to January, 1989 were analysed to determine the seasonal variations of the levels of organochlorine insecticides such as HCH (BHC) and DDT. Both these insecticides showed higher levels from August to January, although this trend was more marked in HCH than DDT, reflecting the application of HCH largely, and probably small quantities of DDT during the flowering season of rice. The alpha-HCH was detected as a dominant isomer for all seasons monitored followed by gamma-HCH. Among DDT compounds, p,p'-DDT was the highest except in dry season (January to April) when p,p-DDE showed higher percentage. The levels and percentage composition of these insecticides recorded in the present study may aid in interpreting the role of a 'point source' area since India is one of the countries still using the persistent organochlorine pesticides in large quantities.  相似文献   

15.
Concentrations and turbulent fluxes of accumulation mode particles were measured during the 2004–2005 ‘Canopy and Aerosol Particle Interaction in Toulouse Urban Layer’ project (CAPITOUL) at the top of two intersecting street canyons and in the urban boundary layer (UBL) in Toulouse, France. Particle numbers were strongly affected by boundary layer depth and showed limited sensitivity to local emissions. Differences in the diurnal patterns of particle numbers were observed between the finer fraction (0.3–0.4 μm) and coarser fraction (1.6–2.0 μm) of accumulation mode particles, indicating different processes of formation, evolution and transportation may be dominant. Highest particle numbers were observed in the narrow street canyon which had more limited local emissions and comparatively small particle fluxes. However, the improved ventilation rate in the wider canyon was also associated with the downward mixing of particles into the street canyon from the UBL. The results from this study clearly illustrate the temporal and spatial variability of particle numbers and fluxes in the urban atmosphere.  相似文献   

16.
采用标准k-ε湍流模型研究了温度层结对三维街区流场和污染物扩散的影响.结果表明,温度层结对街区流场和污染物均有一定影响.随着不稳定性的增加,气流涡旋中心向地面靠近.中性温度层结下,污染物随着街区内的涡旋先向背风侧迁移,然后主要随气流向下游迁移,很少向上游街区迁移.而不稳定温度层结下,上游街区污染物浓度也随之增加.根据污...  相似文献   

17.
The small-scale spatial variability of air pollution observed in urban areas has created concern about the representativeness of measurements used in exposure studies. It is suspected that limit values for traffic-related pollutants may be exceeded near busy streets, although respected at urban background sites. In order to assess spatial concentration gradients and identify weather conditions that might induce air pollution episodes in urban areas, different sampling and modelling techniques were studied.Two intensive monitoring campaigns were carried out in typical street canyons in Paris during winter and summer. Steep cross-road and vertical concentration gradients were observed within the canyons, in addition to large differences between roadside and background levels. Low winds and winds parallel to the street axis were identified as the worst dispersion conditions. The correlation between the measured compounds gave an insight into their sources and fate. An empirical relationship between CO and benzene was established. Two relatively simple mathematical models and an algorithm describing vertical pollutant dispersion were used. The combination of monitoring and modelling techniques proposed in this study can be seen as a reliable and cost-effective method for assessing air quality in urban micro-environments. These findings may have important implications in designing monitoring studies to support investigation on the health effects of traffic-related air pollution.  相似文献   

18.
Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by -17%, 35% for SO4(2-), and 29% for NH4+, whereas NO3- increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 microg/m(-3), accounting for -26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3-, SO4(2-), NH4+, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

19.
In studies of coarse particulate matter (PM10-2.5), mass concentrations are often estimated through the subtraction of PM2.5 from collocated PM10 tapered element oscillating microbalance (TEOM) measurements. Though all field instruments have yet to be updated, the Filter Dynamic Measurement System (FDMS) was introduced to account for the loss of semivolatile material from heated TEOM filters. To assess errors in PM10-2.5 estimation when using the possible combinations of PM10 and PM2.5 TEOM units with and without FDMS, data from three monitoring sites of the Colorado Coarse Rural–Urban Sources and Health (CCRUSH) study were used to simulate four possible subtraction methods for estimating PM10-2.5 mass concentrations. Assuming all mass is accounted for using collocated TEOMs with FDMS, the three other subtraction methods were assessed for biases in absolute mass concentration, temporal variability, spatial correlation, and homogeneity. Results show collocated units without FDMS closely estimate actual PM10-2.5 mass and spatial characteristics due to the very low semivolatile PM10-2.5 concentrations in Colorado. Estimation using either a PM2.5 or PM10 monitor without FDMS introduced absolute biases of 2.4 µg/m3 (25%) to –2.3 µg/m3 (–24%), respectively. Such errors are directly related to the unmeasured semivolatile mass and alter measures of spatiotemporal variability and homogeneity, all of which have implications for the regulatory and epidemiology communities concerned about PM10-2.5. Two monitoring sites operated by the state of Colorado were considered for inclusion in the CCRUSH acute health effects study, but concentrations were biased due to sampling with an FDMS-equipped PM2.5 TEOM and PM10 TEOM not corrected for semivolatile mass loss. A regression-based model was developed for removing the error in these measurements by estimating the semivolatile concentration of PM2.5 from total PM2.5 concentrations. By estimating nonvolatile PM2.5 concentrations from this relationship, PM10-2.5 was calculated as the difference between nonvolatile PM10 and PM2.5 concentrations.

Implications: Errors in the estimation of PM10-2.5 concentrations using subtraction methods were shown to be related to the unmeasured semivolatile mass when using certain combinations of TEOM instruments. For the northeastern Colorado region, the absolute bias associated with this error significantly affects mean and 95th percentile values, which would affect assessment of compliance if PM10-2.5 is regulated in the future. Estimating PM10-2.5 mass concentrations using nonvolatile mass concentrations from collocated PM10 and PM2.5 TEOM monitors closely estimates the total PM10-2.5 mass concentrations. A corrective model that removes the described error was developed and applied to data from two sites in Denver.

Supplemental Materials: Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

20.
Measurements of ammonia and particulate ammonium were made in the daytime (1200–1500) at a urban site in Yokohama during the 5-year period, 1982–1986. Diurnal NH3 concentrations showed a distinct seasonal trend with a maximum in summer. The diurnal monthly average concentrations were above 10 ppb during the late spring and summer months, while the concentrations during the winter months were between 1 and 5 ppb. The seasonal variation was found to be very similar to that of the average air temperature and showed a periodic pattern over 1 year. A good correlation was observed between diurnal NH3 concentrations and average air temperatures during the 5-year period. The annual mean concentrations were in the range of 6.6–7.6 ppb with only a minor deviation. The diurnal monthly average concentrations of particulate NH4+ were between 1 and 4 μg m−3 and no significant seasonal variations were seen. As a short-term study, simultaneous measurements of NH3, HNO3 and particulate NO3 were made. The diurnal mean concentrations of NH3 and HNO3 were 7.6 and 0.8 ppb, respectively. The concentration of particulate NO3 ranged from 0.3 to 6μg−3. Both HNO3 and particulate NO3 concentrations were relatively low and constant. Thus, NH3 and HNO3 levels did not agree with the concentrations predicted from the NH4NO3 equilibrium constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号