首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl bromide (CH3Br) is currently the most widely used soil fumigant, and its emission into the atmosphere after application reportedly contributes to ozone depletion in the stratosphere. Irreversible degradation and partially reversible sorption reactions affect the quantity of this furnigant reaching the soil surface and escaping into the atmosphere. Incubation studies in closed headspace vials under controlled conditions showed that degradation of CH3Br was highly dependent on soil organic matter content, and to a lesser extent, on the moisture level in the soil. Methylation of CH3Br on organic matter was suggested to be the major reaction that CH3Br undergoes in the soil environment. Other soil constituents such as clay did not contribute to the degradation under moist or air-dried conditions, though enhanced degradation was observed on oven-dried montmorillonite and kaolinite clays. Within soil profiles, degradation of CH3Br decreased with soil depth mainly due to the reduction of soil organic matter content with depth. In both Greenfield and Wasco sandy loams, the degradation rate of CH3Br in soil layers from 0 to 270 cm could be estimated from soil organic matter content. Sorption of CH3Br on moist soils was generally limited, and varied with soil depth. The degree of sorption could be predicted from soil moisture alone or soil moisture and organic matter content.  相似文献   

2.
污染土壤淋洗技术是修复污染土壤的一种新方法 ,是对污染土壤生物修复的一种补充 ,使污染土壤修复的系统化成为可能。淋洗法主要使用淋洗剂清洗土壤 ,使土壤中污染物随淋洗剂流出 ,然后对淋洗剂及土壤进行后续处理 ,从而达到修复污染土壤的目的。因为淋洗剂的种类和淋洗方式的不同 ,土壤淋洗法可分为许多种类。土壤淋洗法主要受土壤条件、污染物类型、淋洗剂的种类和运行方式等因素影响。综合考虑多方面因素 ,就有潜力设计出经济高效的土壤淋洗系统。土壤淋洗法有很多优点 ,尽管也存在一些问题 ,但其技术上的优势也是其他方法难以取代的 ,所以有良好的应用前景。  相似文献   

3.
Chung N  Alexander M 《Chemosphere》2002,48(1):109-115
Sixteen soils with markedly different properties were analyzed to determine their porosity in the range of 7 nm-10 microm, cation-exchange capacity (CEC), surface area and clay mineralogy. The extent of sequestration of phenanthrene and atrazine has been shown to differ markedly among these soils. Correlations were sought between soil characteristics and four methods of measuring sequestration. Simple correlation analysis showed that some but not all measures of phenanthrene and atrazine sequestration were highly correlated with organic C content, nanoporosity or CEC but not other properties of the soils. Multiple linear-regression analysis suggested an interaction of organic C content with soil texture, CEC or surface area in determining the extent of atrazine or phenanthrene sequestration. We conclude that organic C content, CEC and other properties of soil may be useful predictors of sequestration of some compounds.  相似文献   

4.
Half-lives (t1/2) of two soil incorporated s-triazines (atrazine and prometon) and two thiocarbamate (EPTC and triallate) herbicides were determined in relation to soil moisture content in two California soils. Treated soils were incubated at three moisture levels in aerated glass vials at 25 +/- 1 degree C and were analyzed at 0, 7, 16, 28, 56 and 112 day intervals. Loss of herbicides in all treatments followed first-order kinetics. The t1/2-values of all herbicides decreased with increasing soil moisture and followed an empirical equation, t1/2 = aM(-b) (where t1/2 is half-life; M the moisture content; and a and b are constants). Soil moisture had a greater effect on carbamates than on s-triazines . Prometon exhibited the longest half-life in both soils, whereas EPTC was least persistent in one soil and atrazine in another. The t1/2-values for atrazine, prometon, EPTC, and triallate with medium moisture levels and 10 microg/g concentration were 34.6, 43.2, 25.4 and 38.1 days in sandy loam and 26.5, 44.4, 44.1 and 25.9 days in loamy sand, respectively. Disappearance of 50% of the applied concentrations of most of the herbicide-soil combinations (except EPTC and triallate in one soil) took longer for lower initial concentrations (1 microg/g) than for higher concentrations (10 microg/g).  相似文献   

5.
Nitrogen (N) remaining as inorganic ('mineral') soil N at crop harvest (N(minH)) contributes to nitrate leaching. N(minH) data from 20 (grass) and 78 (maize) experiments were examined to identify main determinants of N(minH). N-rate (A) explained 51% (grass) and 34% (maize) of the variance in N(minH). Best models included in addition crop N-offtake (U), offtake in unfertilised plots (U(0)), and N(minH) in unfertilised plots (N(minH,0)) and then explained up to 75% of variance. At low N-rates where apparent N recovery rho keeps to its initial value rho(ini), N(minH) keeps to its base level N(minH,0). At N-rates that exceed the value A(crit) where rho drops below rho(ini), N(minH) rises above N(minH,0) by an amount proportional to (rho(ini)-rho)A. About 80% of (rho(ini)-rho)A was found as N(minH,) in grass as well as in maize. The fraction (1-rho(ini))A does not appear to contribute to N(minH) at low N-rates (A< or =A(crit)) or at high N-rates (A>A(crit)).  相似文献   

6.
The oxidation state of chromium in contaminated soils is an important indicator of toxicity and potential mobility. Chromium in the hexavalent state is highly toxic and soluble, whereas the trivalent state is much less toxic and relatively insoluble. A laboratory study investigated the impact of growing plants and supplemental organic matter on chromium transport in soil. Plants alone had no appreciable effect on the chromium oxidation state in soil. Soil columns with higher organic content were associated with lower ratios of chromate:total chromium than the columns with lower organic matter. Analyses of column leachate, plant biomass, and soil indicate that more chromium leaching occurred in the vegetated, low organic columns. Retention of Cr in the soils was correlated to the Cr(III) content. Plant uptake of chromium accounted for less than 1% of the chromium removed from the soil. Overall, the addition of organic matter had the strongest influence on chromium mobility.  相似文献   

7.
Abstract

Volatilization of 14C‐lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5‐day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparently due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water of the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

8.
The effect of sludge processing (digested dewatered, pelletized, alkaline-stabilized, composted, and incinerated), soil type and initial soil pH on trace metal mobility was examined using undisturbed soil columns. Soils tested were Hudson silt loam (Glossaquic Hapludalf) and Arkport fine sandy loam (Lamellic Hapludalf), at initial pH levels of 5 and 7. Sludges were applied during four accelerated cropping cycles (215 tons/ha cumulative application for dewatered sludge; equivalent rates for other sludges), followed by four post-application cycles. Also examined (with no sludge applications) were Hudson soil columns from a field site that received a heavy loading of sludge in 1978. Romaine (Lactuca sativa) and oats (Avena sativa) were planted in alternate cycles, with oats later replaced by red clover (Trifolium pratense). Soil columns were watered with synthetic acid rainwater, and percolates were analyzed for trace metals (ICP spectroscopy), electrical conductivity and pH. Percolate metal concentrations varied with sludge and soil treatments. Composted sludge and ash had the lowest overall metal mobilities. Dewatered and pelletized sludge had notable leaching of Ni, Cd and Zn in Arkport soils, especially at low pH. Alkaline-stabilized sludge had the widest range of percolate metals (relatively insensitive to soils) including Cu, Ni, B and Mo. Old site column percolate concentrations showed good agreement with previous field data. Little leaching of P was observed in all cases. Cumulative percolate metal losses for all treatments were low relative to total applied metals. Leachate and soil pH were substantially depressed in dewatered and pelletized sludge soil columns and increased for alkaline-stabilized and ash treatments.  相似文献   

9.

Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  相似文献   

10.
针对集约化农业过量施入化肥农药等引起的土壤质量退化问题,采用造纸黒液废物提取的低聚木糖作为土壤调理剂。通过室内土壤培养,研究不同低聚木糖施用量(0.01%、0.05%、0.1%和0.2%)对土壤微生物数量和脲酶活性的影响。通过番茄盆栽实验,并设置添加0.1%商品生物有机肥处理作比较,研究不同低聚木糖施用量对土壤微生物量氮磷、脲酶和磷酸酶活性的影响。结果表明,低聚木糖可以提高土壤细菌、放线菌数量、土壤脲酶和磷酸酶活性。低聚木糖也显著增加番茄各生长期土壤微生物量碳和磷含量,其中开花期时低聚木糖的促进作用最为明显。所有剂量处理中,以0.05%的低聚木糖添加量处理效果最为明显,且该处理效果也优于添加0.1%生物有机肥处理。低聚木糖作为土壤调理剂,能显著提高土壤微生物数量和酶活性,改善土壤生态系统,提高土壤质量,在农业上具有广阔的应用前景。  相似文献   

11.
Bogan BW  Sullivan WR 《Chemosphere》2003,52(10):1717-1726
Six soils, obtained from grasslands and wooded areas in Northeastern Illinois, were physicochemically characterized. Measured parameters included total organic carbon (TOC) content, contents of humic acid, fulvic acid and humin, pore volume and pore size distribution, and chemical makeup of soil organic matter (determined using solid-state 13C-NMR). Moistened, gamma-sterilized soils were spiked with 200 ppm of either phenanthrene or pyrene (including 14C label); following 0, 40, or 120 days of aging, the contaminant-spiked soils were then inoculated with Mycobacterium austroafricanum strain GTI-23, and evolution of 14CO2 was assessed over a 28-day period. Results for both phenanthrene and pyrene indicated that increased contact time led to increased sequestration and reduced biodegradation, and that TOC content was the most important parameter governing these processes. One soil, although only tested with phenanthrene, showed significantly lower-than-expected sequestration (higher-than-expected mineralization) after 40 days of aging, despite a very high TOC value (>24%). Because the level of sequestration in this soil was proportional to the others after 120 days of aging, this implies some difference in the temporal progression of sequestration in this soil, although not in its final result. The primary distinguishing feature of this soil was its considerably elevated fulvic acid content. Further experiments showed that addition of exogenous fulvic acid to a soil with very low endogenous humic acids/fulvic acids content greatly enhanced pyrene mineralization by M. austroafricanum. Extractabilities of 13 three- to six-ring coal tar PAHs in n-butanol from the six soils after 120 days of sequestration were strongly TOC-dependent; however, there was no discernible correlation between n-butanol extractability and mycobacterial PAH mineralization.  相似文献   

12.
The photodegradation fate of widely used fluoroquinolone (FQ) drugs has been studied both at the water–soil interface and in soil at actual concentrations (500 ng g?1) under natural solar light. Both human and veterinary drugs have been examined, namely ciprofloxacin, danofloxacin, enrofloxacin, levofloxacin, marbofloxacin and moxifloxacin. After spiking and irradiation, samples were submitted to microwave-assisted extraction and analyzed by high-performance liquid chromatography coupled to fluorescence detection (HPLC–FD). FQs degradation was faster in aqueous soil suspension than in neat soil (but lower than in “clean” water). A number of byproducts were identified by HPLC electrospray ionization tandem mass spectrometry after a post-extraction cleanup based on a molecularly imprinted polymer phase, for a more accurate detection. The distribution in the suspension was intermediate between those observed in soils and in aqueous solutions.  相似文献   

13.
Emissions of soil fumigants are regulated to protect air quality in California. Irrigation prior to fumigation can reduce fumigant emissions at relatively low costs; however, the optimum range of soil water content that reduces emissions without reducing efficacy is not clearly defined. The objective of this study was to determine the effects of soil water content [at 30, 45, 60, 75, 90 and 100% field capacity (FC)] on the emission and distribution of fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP) in columns packed with a sandy loam soil. After injecting equal amounts of cis-1,3-D, trans-1,3-D, and CP, fumigant emissions and distribution in soil were monitored for 14 days. Emissions of all three compounds showed similar response to soil water content except that CP emissions were lower than both isomers of 1,3-D. The emission peak flux was highest and occurred earliest in the driest soil while it was reduced and delayed as soil water content increased. After the peak, emission flux decreased rapidly in the driest soil but more slowly in higher water content treatments. Initially, higher soil water content resulted in substantially lower cumulative emissions among the treatments, but as time progressed, the differences in cumulative emissions decreased or even disappeared. These trends were likely due to the effect of the closed-bottom short soil columns which allowed fumigants to only move upward and contribute to emission. Higher fumigant concentrations in the soil–gas phase were observed in high soil water content treatments, due to less emission loss and more fumigant retained in the soil.  相似文献   

14.
The stability of TiO2 nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO2 could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO2 contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO2 (18.8-83.0%) readily passed through the soils columns, while TiO2 was significantly retained by soils with higher clay contents and salinity. TiO2 aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO2 in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO2 nanoparticles to deep soil layers.  相似文献   

15.
Gupta S  Gajbhiye VT 《Chemosphere》2002,47(9):901-906
Effect of concentration, moisture and soil type on dissipation of flufenacet from soil has been studied under laboratory condition. The treated soil samples (1 and 10 microg/g levels) were incubated at 25+/-1 degrees C. The effect of moisture was studied by maintaining the treated soil samples (10 microg/g level) at field capacity and submerged condition. In general, flufenacet persisted for 60-90 days at lower and beyond 90 days at high rate. The dissipation of flufenacet from soil followed first order kinetics with half-life (DT50) values ranging from 10 to 31 days. The dissipation of flufenacet was faster at low rate than high rate of application. The slow dissipation at high rate could be attributed to inhibition of microbial activity at high rate. There was little overall difference in rate of dissipation in Ranchi and Nagpur soil maintained at field capacity and submerged condition moisture regimes. In Delhi soil net dissipation was faster under field capacity moisture than submerged condition. Soil types greatly influenced the dissipation of flufenacet. Dissipation was fastest in Delhi soil (DT50 10.1-22.3 days) followed by Ranchi soil (DT50 10.5-24.1 days) and least in Nagpur soil (DT50 29.2-31.0 days). The difference in dissipation could be attributed to the magnitude of adsorption and desorption of flufenacet in these soils.  相似文献   

16.
A deterministic model for long-term behaviour of contaminants in the rootzone is developed that includes sorption, leaching, and plant uptake. The model is applied to cadmium accumulation in a sandy soil and uptake of cadmium by barley. Sensitivity analysis showed that the sensitivity of the leaching rate to changes in soil chemical and soil physical parameters decreases as a function of time, and becomes zero when steady state is reached. In contrast, accumulation of cadmium in soil and the plant uptake rate of barley are increasingly sensitive to soil chemical and soil physical parameters as time preceeds. To analyse cadmium behaviour in a field that is heterogeneous with respect to soil physical properties, the interstitial flow velocity was assumed to be a random, lognormally distributed variate. Using Monte Carlo simulation, the average plant uptake rate appeared to be much higher in the stochastic analysis than in the deterministic approach. Steady state is reached after a very long period of time. For a lognormally distributed proton activity, causing heterogeneity with respect to the sorption capacity of the soil, the model predicted similar deviations from the deterministic approach. It is concluded that reference values for groundwater and crop quality are exceeded earlier in a heterogeneous field than in a homogenous soil profile. Moreover, when average values suggest an acceptable situation, variability of the leaching rate and the plant uptake rate can still cause exceedance of reference values in part of the field. Therefore, it is reasoned that environmental quality standards should take soil heterogeneity into account.  相似文献   

17.

This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm3 kg−1. Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.

  相似文献   

18.
Xie XM  Liao M  Yang J  Chai JJ  Fang S  Wang RH 《Chemosphere》2012,88(10):1190-1195
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.  相似文献   

19.
Fracturing, either pneumatic or hydraulic, is a method to improve the performance of soil vapor extraction (SVE) in relatively low permeability soils (< 10(-5) cm/s). A two-dimensional model is presented to simulate trichloroethylene (TCE) soil vapor extraction modified by fracturing. Flow and transport is modeled using mobile macropore and micropore networks, which also have been identified in the literature as dual porosity, dual permeability, or heterogeneous flow models. In this model, fluids can flow in both the macropore and micropore networks. This represents a more general model compared to immobile micropore, mobile macropore models presented thus far in the literature for vapor flow and transport in two dimensions. The model considers pressure- and concentration-driven exchange between the macropore and micropore networks, concentration-driven exchange between the gas and sorbed phases within each network, and equilibrium exchange between the gas and water and a sorbed phase within each network. The parameters employed in an example simulation are based on field measurements made at a fractured site. Considered in the simulations were the influence of the volume percentage of fractures, the length of fractures, the relative location of the water table, and the influence of pulsed pumping. For these simulations, internetwork concentration-driven exchange most significantly affected mass removal. The volume percentage of fractures more significantly influence flow and mass removal than the length of fractures. The depth of the water table below the contamination plume only significantly influenced flow and mass removal when the water table was within 60 cm of the bottom of the contaminated soil in the vadose zone for the parameters considered in this study. Pulsed pumping was not found to increase the amount of mass removed in this study.  相似文献   

20.
Herbicides pose a significant threat to the natural environment, in particular in soils that are most exposed to plant protection agents. Prolonged herbicide use leads to changes in soil metabolism and decreases soil productive potential. In this study, the influence of carfentrazone-ethyl (CE) on the microbiological and biochemical properties of soil and the yield of Triticum aestivum L. was evaluated. Carfentrazone-ethyl was applied to sandy loam (pHKCl – 7.0) in doses of 0.000, 0.264, 5.280, 10.56, 21.18, 42.24, 84.48 and 168.96 µg kg?1 DM soil. Soil samples were subjected to microbiological and biochemical analyses on experimental days 30 and 60. Carfentrazone-ethyl disrupted the biological equilibrium in soil by decreasing the abundance and biodiversity of soil-dwelling microorganisms, the activity of soil enzymes, the values of the biochemical activity indicator and spring wheat yields. Carfentrazone-ethyl had the most adverse effects when applied in doses many fold higher than those recommended by the manufacturer. The toxic effects of CE were also determined by its soil retention time. Soil treated with CE was characterized by higher counts of oligotrophic bacteria, organotrophic bacteria, bacteria of the genus Azotobacter, actinomycetes and fungi on day 60, and spore-forming oligotrophic bacteria on day 30. The activity of dehydrogenases, urease, alkaline phosphatase and β-glucosidase was higher on day 30 than on day 60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号