首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A study was conducted on a south Texas rangeland area to evaluate aerial color-infrared (CIR) photography and CIR digital imagery combined with unsupervised image analysis techniques to map broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby]. Accuracy assessments performed on computer-classified maps of photographic images from two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 88.3%, respectively; whereas, accuracy assessments performed on classified maps from digital images of the same two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 92.8%, respectively. These results indicate that CIR photography and CIR digital imagery combined with image analysis techniques can be used successfully to map broom snakeweed infestations on south Texas rangelands.  相似文献   

2.
Natural color photographs were used to detect the coverage of saltcedar, Tamarix parviflora, along a 40 km portion of Cache Creek near Woodland, California. Historical aerial photographs from 2001 were retrospectively evaluated and compared with actual ground-based information to assess accuracy of the assessment process. The color aerial photos were sequentially digitized, georeferenced, classified using color and texture methods, and mosaiced into maps for field use. Eight types of ground cover (Tamarix, agricultural crops, roads, rocks, water bodies, evergreen trees, non-evergreen trees and shrubs (excluding Tamarix)) were selected from the digitized photos for separability analysis and supervised classification. Due to color similarities among the eight cover types, the average separability, based originally only on color, was very low. The separability was improved significantly through the inclusion of texture analysis. Six types of texture measures with various window sizes were evaluated. The best texture was used as an additional feature along with the color, for identifying Tamarix. A total of 29 color photographs were processed to detect Tamarix infestations using a combination of the original digital images and optimal texture features. It was found that the saltcedar covered a total of 3.96 km2 (396 hectares) within the study area. For the accuracy assessment, 95 classified samples from the resulting map were checked in the field with a global position system (GPS) unit to verify Tamarix presence. The producer's accuracy was 77.89%. In addition, 157 independently located ground sites containing saltcedar were compared with the classified maps, producing a user's accuracy of 71.33%.  相似文献   

3.
QuickBird multispectral satellite imagery was evaluated for distinguishing giant salvinia (Salvinia molesta Mitchell) in a large reservoir in east Texas. The imagery had four bands (blue, green, red, and near-infrared) and contained 11-bit data. Color-infrared (green, red, and near-infrared bands), normal color (blue, green and red bands), and four-band composite (blue, green, red, and near-infrared bands) images were studied. Unsupervised image analysis was used to classify the imagery. Accuracy assessments performed on the classification maps of the three composite images had producer’s and user’s accuracies for giant salvinia ranging from 87.8 to 93.5%. Color-infrared, normal color, and four-band satellite imagery were excellent for distinguishing giant salvinia in a complex field habitat.  相似文献   

4.
Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.  相似文献   

5.
Applying Satellite Imagery to Triage Assessment of Ecosystem Health   总被引:3,自引:0,他引:3  
Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR) imagery to develop calibration patterns of change in the Normalized Difference Vegetation Index (NDVI) over the growing season for selected sites for which we had ground data and historical data characterizing these sites as irreversibly degraded. We used the NDVI curves for these training sites to classify and map the irreversibly degraded rangelands in southern New Mexico. We composited images into four year blocks: 1988–1991, 1989–1992, and 1990–1993. The overlap in pixels classified as irreversibly degraded ranged from 42.6% to 84.3% in year block comparisons. Quantitative data on vegetation composition and cover were collected at 13 sites within a small portion of the study area. Wide coverage reconnaissance of boundaries between vegetation types was also conducted for comparisons with year block maps. The year block 1988–1991 provided the most accurate delineation of degraded areas. The rangelands of southern New Mexico experienced above average precipitation from 1990–1993. The above average precipitation resulted in spatially variable productivity of ephemeral weedy plants on the training sites and degraded rangelands which resulted in much smaller areas classified as irreversibly degraded. We selected imagery for a single year, 1989, which was characterized by the absence of spring annual plant production in order to eliminate the confounding effect of reflectance from annual weeds. That image analysis classified more than 20% of the rangelands as irreversibly degraded because areas with shrub-grass mosaic were included in the degraded classification. The single year image included more than double the area classified as irreversibly degraded by the year blocks. AVHRR imagery can be used to make triage assessments of irreversibly degraded rangeland but such assessment requires understanding productivity patterns and variability across the landscapes of the region and careful selection of the years from which imagery is chosen.  相似文献   

6.
The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields and new built-up areas. All these changes happened without a proper monitoring and urban planning strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map was obtained by visual interpretation and manual digitization of land-use patches. The images used, dated 2011, were obtained from Digital Globe’s WorldView 1 and WorldView 2 satellites. Nine land-use classes and 18 subclasses were identified and mapped. During a field survey, ground control points were collected to test the geographic and thematic accuracy of the land-use map. The final product’s overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps were created using images from the early 2000s derived from Google Earth historical imagery. Post-classification comparison of the classified maps showed that growth of built-up and agricultural areas resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef habitat. The LULC map of the Republic of the Maldives produced in this study can be used by government authorities to make sustainable land-use planning decisions and to provide better management of land use and land cover.  相似文献   

7.
Management of coral reef resources is a challenging task, in many cases, because of the scarcity or inexistence of accurate sources of information and maps. Remote sensing is a not intrusive, but powerful tool, which has been successfully used for the assessment and mapping of natural resources in coral reef areas. In this study we utilized GIS to combine Landsat TM imagery, aerial photography, aerial video and a digital bathymetric model, to assess and to map submerged habitats for Alacranes reef, Yucatán, México. Our main goal was testing the potential of aerial video as the source of data to produce training areas for the supervised classification of Landsat TM imagery. Submerged habitats were ecologically characterized by using a hierarchical classification of field data. Habitats were identified on an overlaid image, consisting of the three types of remote sensing products and the bathymetric model. Pixels representing those habitats were selected as training areas by using GIS tools. Training areas were used to classify the Landsat TM bands 1, 2 and 3 and the bathymetric model by using a maximum likelihood algorithm. The resulting thematic map was compared against field data classification to improve habitats definition. Contextual editing and reclassification were used to obtain the final thematic map with an overall accuracy of 77%. Analysis of aerial video by a specialist in coral reef ecology was found to be a suitable source of information to produce training areas for the supervised classification of Landsat TM imagery in coral reefs at a coarse scale.  相似文献   

8.
In the event of a natural or anthropogenic disturbance, environmental resource managers require a reliable tool to quickly assess the spatial extent of potential damage to the seagrass resource. The temporal availability of the Landsat 5 Thematic Mapper (TM) imagery provided a suitable option to detect and assess damage of the submerged aquatic vegetation (SAV). This study examined Landsat TM imagery classification techniques to create two-class (SAV presence/absence) and three-class (SAV estimated coverage) SAV maps of the seagrass resource. The Mahalanobis Distance method achieved the highest overall accuracy (86%) and validation accuracy (68%) for delineating the seagrass resource (two-class SAV map). The Maximum Likelihood method achieved the highest overall accuracy (74%) and validation accuracy (70%) for delineating the seagrass resource three-class SAV map. The Landsat 5 TM imagery classification provided a seagrass resource map product with similar accuracy to the aerial photointerpretation maps (validation accuracy 71%). The results support the application of remote sensing methods to analyze the spatial extent of the seagrass resource.  相似文献   

9.
The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).  相似文献   

10.
This study aims at the classification and water quality assessment of Harike wetland (Ramsar site) in India using satellite images from the Indian Remote Sensing satellite, Resourcesat (IRS P6). The Harike wetland is a converging zone of two rivers, Beas and Sutlej. The satellite images of IRS Linear Imaging Self Scanner (LISS) IV multispectral sensor with three bands (green, red, and near infrared (NIR)) and a spatial resolution of 5.8 m were classified using supervised image classification techniques. Field points for image classification and water sampling were recorded using a Garmin eTrex Global Positioning System. The water quality parameters assessed were dissolved oxygen, conductivity, pH, turbidity, total and suspended solids (SS), chemical oxygen demand, and Secchi disk transparency (SDT). Correlations were established between turbidity and SS, SS and SDT, and total solids and turbidity. Using reflectance values from the green, red, and NIR bands, we then plotted the water quality parameters with the mean digital number values from the satellite imagery. The NIR band correlated significantly with the water quality parameters, whereas, using SDT values, it was observed that the green and the red reflectance bands were able to distinguish the waters from the two rivers, which have different water qualities.  相似文献   

11.
Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8’s spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82 %, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation.  相似文献   

12.
This study compared performance of four change detection algorithms with six vegetation indices derived from pre- and post-Katrina Landsat Thematic Mapper (TM) imagery and a composite of the TM bands 4, 5, and 3 in order to select an optimal remote sensing technique for identifying forestlands disturbed by Hurricane Katrina. The algorithms included univariate image differencing (UID), selective principal component analysis (PCA), change vector analysis (CVA), and postclassification comparison (PCC). The indices consisted of near-infrared to red ratios, normalized difference vegetation index, Tasseled Cap index of greenness, brightness, and wetness (TCW), and soil-adjusted vegetation index. In addition to the satellite imagery, the “ground truth” data of forest damage were also collected through field investigation and interpretation of post-Katrina aerial photos. Disturbed forests were identified by classifying the composite and the continuous change imagery with the supervised classification method. Results showed that the change detection techniques exerted apparent influence on detection results with an overall accuracy varying between 51% and 86% and a kappa statistics ranging from 0.02 to 0.72. Detected areas of disturbed forestlands were noticeable in two groups: 180,832–264,617 and 85,861–124,205 ha. The landscape of disturbed forests also displayed two unique patterns, depending upon the area group. The PCC algorithm along with the composite image contributed the highest accuracy and lowest error (0.5%) in estimating areas of disturbed forestlands. Both UID and CVA performed similarly, but caution should be taken when using selective PCA in detecting hurricane disturbance to forests. Among the six indices, TCW outperformed the other indices owing to its maximum sensitivity to forest modification. This study suggested that compared with the detection algorithms, proper selection of vegetation indices was more critical for obtaining satisfactory results.  相似文献   

13.
环境卫星CCD影像在太湖湖泛暗色水团监测中的应用   总被引:1,自引:0,他引:1  
太湖地区2009年5月11日、2010年8月21日、2011年7月28日和2011年9月24日的环境卫星CCD影像显示,在太湖西部沿岸带、竺山湖等水域存在湖泛暗色水团现象。由于环境CCD缺少辅助反演气溶胶信息的2.1um波段,试验了基于空气自动监测子站获得的与环境卫星CCD成像时间接近的地面能见度测量数据进行FLAASH大气校正的方法,反演结果总体上符合水体光谱特征。提取了湖泛水体、对照水体阳区在CCD各波段的光谱反射率数据统计特征。结果表明,和对照水体相比,湖泛水体在环境卫星CCD的可见光—近红外波段具有较低的反射率,与人眼观察湖泛水色暗黑的感官一致,另一方面,湖泛水域由于仍有一定的藻类存在,在环境卫星CCD近红外(波段4 )具有比可见光(波段3)略高的反射率,其规律与基于Landsat ETM的湖泛暗色水团遥感分析结果相一致。  相似文献   

14.
Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis—[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.  相似文献   

15.
Coastline mapping and coastline change detection are critical issues for safe navigation, coastal resource management, coastal environmental protection, and sustainable coastal development and planning. Changes in the shape of coastline may fundamentally affect the environment of the coastal zone. This may be caused by natural processes and/or human activities. Over the past 30 years, the coastal sites in Turkey have been under an intensive restraint associated with a population press due to the internal and external touristic demand. In addition, urbanization on the filled up areas, settlements, and the highways constructed to overcome the traffic problems and the other applications in the coastal region clearly confirm an intensive restraint. Aerial photos with medium spatial resolution and high resolution satellite imagery are ideal data sources for mapping coastal land use and monitoring their changes for a large area. This study introduces an efficient method to monitor coastline and coastal land use changes using time series aerial photos (1973 and 2002) and satellite imagery (2005) covering the same geographical area. Results show the effectiveness of the use of digital photogrammetry and remote sensing data on monitoring large area of coastal land use status. This study also showed that over 161 ha areas were filled up in the research area and along the coastal land 12.2 ha of coastal erosion is determined for the period of 1973 to 2005. Consequently, monitoring of coastal land use is thus necessary for coastal area planning in order to protecting the coastal areas from climate changes and other coastal processes.  相似文献   

16.
The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.  相似文献   

17.
In this paper, an attempt has been made to assess, prognosis and observe dynamism of soil erosion by universal soil loss equation (USLE) method at Penang Island, Malaysia. Multi-source (map-, space- and ground-based) datasets were used to obtain both static and dynamic factors of USLE, and an integrated analysis was carried out in raster format of GIS. A landslide location map was generated on the basis of image elements interpretation from aerial photos, satellite data and field observations and was used to validate soil erosion intensity in the study area. Further, a statistical-based frequency ratio analysis was carried out in the study area for correlation purposes. The results of the statistical correlation showed a satisfactory agreement between the prepared USLE-based soil erosion map and landslide events/locations, and are directly proportional to each other. Prognosis analysis on soil erosion helps the user agencies/decision makers to design proper conservation planning program to reduce soil erosion. Temporal statistics on soil erosion in these dynamic and rapid developments in Penang Island indicate the co-existence and balance of ecosystem.  相似文献   

18.
The ecological and economic impacts associated with invasive species are of critical concern to land managers. The ability to map the extent and severity of invasions would be a valuable contribution to management decisions relating to control and monitoring efforts. We investigated the use of hyperspectral imagery for mapping invasive aquatic plant species in the Sacramento-San Joaquin Delta in the Central Valley of California, at two spatial scales. Sixty-four flightlines of HyMap hyperspectral imagery were acquired over the study region covering an area of 2,139 km2 and field work was conducted to acquire GPS locations of target invasive species. We used spectral mixture analysis to classify two target invasive species; Brazilian waterweed (Egeria densa), a submerged invasive, and water hyacinth (Eichhornia crassipes), a floating emergent invasive. At the relatively fine spatial scale for five sites within the Delta (average size 51 ha) average classification accuracies were 93% for Brazilian waterweed and 73% for water hyacinth. However, at the coarser, Delta-wide scale (177,000 ha) these accuracy results were 29% for Brazilian waterweed and 65% for water hyacinth. The difference in accuracy is likely accounted for by the broad range in water turbidity and tide heights encountered across the Delta. These findings illustrate that hyperspectral imagery is a promising tool for discriminating target invasive species within the Sacramento-San Joaquin Delta waterways although more work is needed to develop classification tools that function under changing environmental conditions.  相似文献   

19.
The objective of this research was to explore an accurate and fast way of estimating chlorophyll-a amount, a water quality parameter (WQP), using IKONOS satellite sensor image and in situ measurements. Since the in situ data of WQPs are limited with the number of sampling locations, deriving a correlation between these measurements and remotely sensed image allows synoptic estimates of the related parameter over large areas even if the areas are in remote and inaccessible locations. In this study, simultaneously collected satellite image data and in situ measurements of chlorophyll-a were correlated using multivariate regression model. Different experiments were designed by changing the numbers and distributions of in situ measurements. Regression coefficients of each design and differences between model-derived data and in situ measurements were calculated to find out the optimum design to produce chlorophyll-a map of study region. Results illustrated that both the number and distribution of in situ measurements have impact on regression analysis, therefore should be selected attentively. Also, it is found that IKONOS imagery is an efficient and effective source to derive chlorophyll-a map of the large areas using limited number of ground measurements.  相似文献   

20.
Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecological resources at different scales. High-resolution remote sensing provides unique capabilities in detecting a variety of features and indicators of environmental health and condition. LIDAR is an airborne scanning laser system that provides data on topography, channel dimensions (width, depth), slope, channel complexity (residual pools, volume, morphometric complexity, hydraulic roughness), riparian vegetation (height and density), dimensions of riparian zone, anthropogenic alterations and disturbances, and channel and riparian interaction. Hyperspectral aerial imagery offers the advantage of high spectral and spatial resolution allowing for the detection and identification of riparian vegetation and natural and anthropogenic features at a resolution not possible with satellite imagery. When combined, or fused, these technologies comprise a powerful geospatial data set for assessing and monitoring lentic and lotic environmental characteristics and condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号