首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Soy protein plastics are a renewable, biodegradable alternative to fossil fuel-based plastic resins. Processing of soy protein plastics using conventional methods (injection molding, extrusion) has met with some success. Viscosities of processable formulations that contain soy protein along with the necessary additives, such as glycerol and cornstarch, have not been reported, but are necessary for extrusion modeling and the design of extrusion dies. Resins consisting of soy protein isolate-cornstarch ratios of 4:1, 3:2, and 2:3 were plasticized with glycerol and soy oil, compounded in a twin screw extruder and adjusted to 10% moisture. The effects on viscosity of added sodium sulfite, a titanate coupling agent and recycling were evaluated using a screw-driven capillary rheometer at shear rates of 100–800/s. The viscosities fit a power-law model and were found to be shear thinning with power-law indices, n, of 0.18–0.46 and consistency indices, m, of 1.1 × 104–1.0 × 105. Power-law indices decreased and consistency indices increased with increasing soy protein-to-cornstarch ratio and in the absence of sodium sulfite. Addition of the titanate coupling agent resulted in increased power-law index and decreased consistency index. Viscosities at a shear rate of 400/s decreased with recycling, except for the 4:1 soy protein isolate to cornstarch formulation, which displayed evidence of wall slip. Power-law indices were unaffected by recycling. Viscosities in the tested shear rate range were comparable to polystyrene and low-density polyethylene indicating soy protein plastics are potential drop-in replacements for commodity resins on conventional plastics processing equipment.  相似文献   

2.
The use of biodegradable polymers made from renewable agricultural products such as soy protein isolate has been limited by the tendency of these materials to absorb moisture. A straightforward approach for controlling the inherent water absorbency of the biodegradable polymers involves blending special bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter in a high-shear mixer followed by compression molding. The procedure yields a relatively water-resistant, biodegradable soy protein polymer composite, as previously reported. The aim of the present study is to determine the biodegradability of the new polyphosphate filler/soy protein plastic composites by monitoring the carbon dioxide released over a period of 120 days. The results suggest that the composites biodegrade satisfactorily, with the fillers having no significant effect on the depolymerization and mineralization of the soy protein plastic, processes that would otherwise result in nonbiodegradable composites. Further, the results indicate that the biodegradation and useful service life of these biocomposites may be controlled by changing the filler concentration, making the biocomposites useful in applications in which the control of water resistance and biodegradation is critical.  相似文献   

3.
Blending soy protein with polyesters using a polyvinyllactam as a compatibilizer successfully made soy protein-based plastics. The polyesters used to produce blends included polycaprolactone (PCL) and Biomax (a commercial biodegradable polyester). The blends were processed by compounding extrusion and injection molding. Blends containing soy protein/Biomax-poly(vinyl alcohol) had tensile strengths ranging from 16–22 MPa, with samples containing larger percentages of the synthetic polymer exhibiting greater strengths. Blends made from soy protein, Biomax, and PCL had tensile strengths ranging from 27–33 MPa. All the blends had high Young's moduli but demonstrated brittle characteristics as evident from their low elongations at break, ranging from 1.8–3.1%. Plastics made from soy protein/polyester blends exhibited low water absorption and had good stability under ambient conditions relative to the plastics made from soy protein alone. Blends made from soy protein flour produced plastics with the lowest water absorption.  相似文献   

4.
Dynamic mechanical properties including temperature effect, stress softening, and Payne effect are studied on the elastomer composites filled with soy protein or carbon black. The comparison of protein composite with well-known carbon black composites provides further insight into the protein composites. The elastomers filled with soy protein aggregates give substantial reinforcement effect when compared with the unfilled elastomers. Approximately 400 times increase in shear elastic modulus was observed when 40% by weight of protein is incorporated into the elastomers. The sample films were cast from the particle dispersion of soy protein isolate and carboxylated styrene–butadiene latex. At the higher temperatures, the shear elastic modulus of soy protein-filled composites does not decrease as much as that of the carbon black-filled composites. The behavior of elastic and loss modulus under the oscillatory strain of different magnitude is similar to that of carbon black reinforced styrene–butadiene rubber. However, carbon black composites show a better recovery behavior after eight cycles of dynamic strain. The reduction of shear elastic modulus with dynamic strain (Payne effect) was compared with Kraus model and the fitting parameter related to the aggregate structure of the soy protein. A reasonable agreement between the theoretical model and experiment was obtained, indicating the Payne effect of the protein-related network structure in the elastomers could also be described by the kinetic agglomeration de-agglomeration mechanism.  相似文献   

5.
Biocomposites from soy based bioplastic and chopped industrial hemp fiber were fabricated using twin-screw extrusion and injection molding process. Soy based bioplastics were prepared through cooking with plasticizer and blending with biodegradable poly(ester amide). Mechanical, thermal properties and fracture surface morphology of the “green”/biocomposites were evaluated with universal testing system (UTS), dynamic mechanical analysis (DMA), Environmental Scanning Electron Microscopy (ESEM). It was found that the tensile strength and modulus, flexural strength and modulus, impact strength and heat deflection temperature of industrial hemp fiber reinforced biocomposites significantly improved. The fracture surfaces showed no signs of matrix on the fiber surface suggesting poor interfacial adhesion.  相似文献   

6.
Soybean protein is a potential material for manufacturing of biodegradable plastics. The objective of this investigation was to characterize the thermal and mechanical properties of plastics made from sodium dodecyl sulfate (SDS)-modified soy proteins. Soy protein isolate (SPI) was prepared from defatted soy flour, modified with various concentrations of SDS, and then molded into plastics. The temperatures of denaturation of the modified soy protein increased at low SDS concentration and then decreased at high SDS concentration. At the same SDS concentration, the plastics molded from the modified soy proteins showed a similar temperature of denaturation, but a lower enthalpy of denaturation compared to the modified soy protein. Young's modulus of the plastics decreased as SDS concentration increased, and the tensile strength and strain at break of the plastics reached a maximum value at 1% SDS modification. Two glass transition temperatures were identified corresponding to the 7S and 11S globulins in SPI by dynamic mechanical analysis, and they decreased as SDS concentration increased. The SDS modification increased the water absorption of the plastics.  相似文献   

7.
Soy protein isolate (SPI) was modified using sodium dodecyl sulfate (SDS) and guanidine hydrochloride (GuHCl). Adhesion performance of the modified SPI on fiberboard was studied. The Water-soluble mass of the modified SPI adhesives was examined following modified ASTM D5570. The SDS-modified SPI containing 91% protein had a water-soluble mass of 1.7%. To be considered a water-resistant adhesive, the water-soluble mass of adhesive should be less than 2%. The wet shear strength test showed 100% cohesive failure within fiberboard, indicating that the modified SPI has good water resistance. The effect of drying treatment on adhesion performance of the SDS-modified SPI on fiberboard was then investigated. Drying treatment significantly affected the final adhesion performance. Shear strength did not change much, but the percentage of cohesive failure within fiberboard increased markedly as drying temperature increased. All the unsoaked, soaked, and wet specimens glued by the adhesives treated at 70° or 90°C had 100% cohesive failure within fiberboard. Viscosity also increased greatly with an increase in drying temperature. This information will be useful in developing low-cost adhesive processing system in the future.  相似文献   

8.
The effects of weathering on the constituents of wood and polymer matrix behavior in wood plastic composites (WPCs) were investigated. WPCs were produced from pine, extractives-free pine, and pine holocellulose fibers (60%) together with HDPE (40%). These composites were subjected to xenon-arc accelerated and outside weathering for a total of 1200 h and 120 days, respectively. The color and chemical changes that occurred on the surface of the WPCs were analyzed using a set of analytical techniques. For pine and extractive-free pine filled composites, the results showed that the total color change, lightness, and oxidation increased, while the lignin content decreased. In addition, the weight average molecular weight (Mw) and number average molecular weight (Mn) of extracted HDPE decreased with an increase in exposure time of the composites. However, HDPE crystallinity increased with longer exposure time. Lightness of holocellulose-based WPC changed the least while the change in its HDPE crystallinity was not significant compared to the other composite types. Therefore, holocellulose-based WPC may be preferred for applications where color stability is of high priority.  相似文献   

9.
Modified polycaprolactone was synthesized by melt reaction of PCL and reactive monomers such as glycidyl methacrylate (GMA) and maleic anhydride (MAH) in the presence of benzoyl peroxide in Brabender mixer. MAH showed a different grafting phenomenon compared to GMA. The reaction mechanism was discussed with different reactive monomers. Reactive blends of the PCL-g-GMA and the gelatinized starch with glycerin were prepared and their mechanical properties and biodegradabilities were investigated. Reactive blends of PCL-g-GMA and starch showed well-dispersed starch domain in the matrix and better mechanical strength than the unmodified PCL/starch blend. However, the reaction between PCL-g-GMA and starch induced a crosslinking during the reactive blending and this crosslinking in the blend lowered the biodegradation of the blend during the composting test. The biodegradability was investigated by the weight loss and surface morphology change of the blend in the composting medium.  相似文献   

10.
This paper deals with the mechanical properties and degree of swelling (DS) of starch/PVA blend film with the functional groups i.e., hydroxyl and carboxyl group, of additives. Starch/PVA blend films were prepared by using the mixing process. Glycerol (GL) with 3 hydroxyl group, sorbitol (SO) with 6 hydroxyl group, succinic acid (SA) with 2 carboxyl group, malic acid (MA) with 1 hydroxyl and 2 carboxyl group, tartaric acid (TA) with 2 hydroxyl and 2 carboxyl group and citric acid (CA) with 1 hydroxyl and 3 carboxyl group were used as additives. The results of measured tensile strength (TS) and elongation (%E) verified that both hydroxyl and carboxyl group as a functional groups increased the flexibility and strength of the film. Values of DS for GL-added and SA-added films were low. However, DS values of the films added MA, TA or CA with both hydroxyl and carboxyl group were comparatively high. When the film was dried at low temperature, the properties of the films were evidently improved. The reason is probably because the hydrogen bonding was activated at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号