首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Air pollution is an important risk factor for global burden of disease. There has been recent interest in its possible role in the etiology of diabetes mellitus. Experimental evidence is suggestive, but epidemiological evidence is limited and mixed. We therefore explored the association between air pollution and prevalent diabetes, in a population-based Swiss cohort.We did cross-sectional analyses of 6392 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults [SAPALDIA], aged between 29 and 73 years. We used estimates of average individual home outdoor PM10 [particulate matter <10 μm in diameter] and NO2 [nitrogen dioxide] exposure over the 10 years preceding the survey. Their association with diabetes was modeled using mixed logistic regression models, including participants' study area as random effect, with incremental adjustment for confounders.There were 315 cases of diabetes (prevalence: 5.5% [95% confidence interval (CI): 2.8, 7.2%]). Both PM10 and NO2 were associated with prevalent diabetes with respective odds ratios of 1.40 [95% CI: 1.17, 1.67] and 1.19 [95% CI: 1.03, 1.38] per 10 μg/m3 increase in the average home outdoor level. Associations with PM10 were generally stronger than with NO2, even in the two-pollutant model. There was some indication that beta blockers mitigated the effect of PM10. The associations remained stable across different sensitivity analyses.Our study adds to the evidence that long term air pollution exposure is associated with diabetes mellitus. PM10 appears to be a useful marker of aspects of air pollution relevant for diabetes. This association can be observed at concentrations below air quality guidelines.  相似文献   

2.
IntroductionLong-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France.ObjectivesWe analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013.MethodsThe study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations.ResultsThe cohort recorded 1967 non-accidental deaths. Long-term exposures to baseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR = 1.09;95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR = 1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR = 1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality.ConclusionLong-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger representative population sample.  相似文献   

3.
BackgroundWe investigated the associations between daily sales of respiratory medication and air pollutants in the Brussels-Capital Region between 2005 and 2011.MethodsWe used over-dispersed Poisson Generalized Linear Models to regress daily individual reimbursement data of prescribed asthma and COPD medication from the social security database against each subject's residential exposure to outdoor particulate matter (PM10) or NO2 estimated, by interpolation from monitoring stations. We calculated cumulative risk ratios (RR) and their 95% confidence intervals (CI) for interquartile ranges (IQR) of exposure for different windows of past exposure for the entire population and for seven age groups.ResultsMedian daily concentrations of PM10 and NO2 were 25 μg/m3 (IQR = 17.1) and 38 μg/m3 (IQR = 20.5), respectively. PM10 was associated with daily medication sales among individuals aged 13 to 64 y. For NO2, significant associations were observed among all age groups except > 84 y. The highest RR were observed for NO2, among adolescents, including three weeks lags (RR = 1.187 95%CI: 1.097–1.285).ConclusionThe associations found between temporal changes in exposure to air pollutants and daily sales of respiratory medication in Brussels indicate that urban air pollution contributes to asthma and COPD morbidity in the general population.  相似文献   

4.
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤ 2.5 or 10 μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2 days before) and chronic (365 days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n = 894) of the children (n = 310) reflected slower Stroop Test (p = 0.05) and Digit-Symbol Test (p = 0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087 s (SE: ± 0.034; p = 0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45 ± 3.47 msec; p = 0.007) and Stroop Tests (59.9 ± 26.5 msec; p = 0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.  相似文献   

5.
BackgroundAir pollution, such as fine particulate matter (PM2.5), can increase risk of adverse health events among people with heart disease, diabetes, asthma and chronic obstructive pulmonary disease (COPD) by aggravating these conditions. Identifying the influence of PM2.5 on prevalence of these conditions may help target interventions to reduce disease morbidity among high-risk populations.ObjectivesThe objective of this study is to measure the association of exposure of PM2.5 with prevalence risk of various chronic diseases among a longitudinal cohort of women.MethodsWomen from Ontario who enrolled in the Canadian National Breast Screening Study (CNBSS) from 1980 to 1985 (n = 29,549) were linked to provincial health administrative data from April 1, 1992 to March 31, 2013 to determine the prevalence of major chronic disease and conditions (heart disease, diabetes, asthma, COPD, acute myocardial infarction, angina, stroke and cancers). Exposure to PM2.5 was measured using satellite data collected from January 1, 1998 to December 31, 2006 and assigned to resident postal-code at time of entry into study. Poisson regression models were used to describe the relationship between exposure to ambient PM2.5 and chronic disease prevalence. Prevalence rate ratios (PRs) were estimated while adjusting for potential confounders: baseline age, smoking, BMI, marital status, education and occupation. Separate models were run for each chronic disease and condition.ResultsCongestive heart failure (PR = 1.31, 95% CI: 1.13, 1.51), diabetes (PR = 1.28, 95% CI: 1.16, 1.41), ischemic heart disease (PR = 1.22, 95% CI: 1.14, 1.30), and stroke (PR = 1.21, 95% CI: 1.09, 1.35) showed over a 20% increase in PRs per 10 μg/m3 increase in PM2.5 after adjusting for risk factors. Risks were elevated in smokers and those with BMI greater than 30.ConclusionsThis study estimated significant elevated prevalent rate ratios per unit increase in PM2.5 in nine of the ten chronic diseases studied.  相似文献   

6.
Human health burdens associated with long-term exposure to particulate matter (PM) are substantial. The metrics currently recommended by the World Health Organization for quantification of long-term health-relevant PM are the annual average PM10 and PM2.5 mass concentrations, with no low concentration threshold. However, within an annual average, there is substantial variation in the composition of PM associated with different sources. To inform effective mitigation strategies, therefore, it is necessary to quantify the conditions that contribute to annual average PM10 and PM2.5 (rather than just short-term episodic concentrations). PM10, PM2.5, and speciated water-soluble inorganic, carbonaceous, heavy metal and polycyclic aromatic hydrocarbon components are concurrently measured at the two UK European Monitoring and Evaluation Programme (EMEP) ‘supersites’ at Harwell (SE England) and Auchencorth Moss (SE Scotland). In this work, statistical analyses of these measurements are integrated with air-mass back trajectory data to characterise the ‘chemical climate’ associated with the long-term health-relevant PM metrics at these sites. Specifically, the contributions from different PM concentrations, months, components and geographic regions are detailed. The analyses at these sites provide policy-relevant conclusions on mitigation of (i) long-term health-relevant PM in the spatial domain for which these sites are representative, and (ii) the contribution of regional background PM to long-term health-relevant PM.At Harwell the mean (± 1 sd) 2010–2013 annual average concentrations were PM10 = 16.4 ± 1.4 μg m 3 and PM2.5 = 11.9 ± 1.1 μg m 3 and at Auchencorth PM10 = 7.4 ± 0.4 μg m 3 and PM2.5 = 4.1 ± 0.2 μg m 3. The chemical climate state at each site showed that frequent, moderate hourly PM10 and PM2.5 concentrations (defined as approximately 5–15 μg m 3 for PM10 and PM2.5 at Harwell and 5–10 μg m 3 for PM10 at Auchencorth) determined the magnitude of annual average PM10 and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 concentrations. These moderate PM10 and PM2.5 concentrations were derived across the range of chemical components, seasons and air-mass pathways, in contrast to the highest PM concentrations which tended to associate with specific conditions. For example, the largest contribution to moderate PM10 and PM2.5 concentrations – the secondary inorganic aerosol components, specifically NO3 – were accumulated during the arrival of trajectories traversing the spectrum of marine, UK, and continental Europe areas. Mitigation of the long-term health-relevant PM impact in the regions characterised by these two sites requires multilateral action, across species (and hence source sectors), both nationally and internationally; there is no dominant determinant of the long-term PM metrics to target.  相似文献   

7.
BackgroundElevated temperature and air pollution have been associated with increased mortality. Exposure to heat and air pollution, as well as the density of vulnerable groups varies within cities. The objective was to investigate the extent of neighbourhood differences in mortality risk due to heat and air pollution in a city with a temperate maritime climate.MethodsA case-crossover design was used to study associations between heat, air pollution and mortality. Different thermal indicators and air pollutants (PM10, NO2, O3) were reconstructed at high spatial resolution to improve exposure classification. Daily exposures were linked to individual mortality cases over a 15 year period.ResultsSignificant interaction between maximum air temperature (Tamax) and PM10 was observed. During “summer smog” days (Tamax > 25 °C and PM10 > 50 μg/m3), the mortality risk at lag 2 was 7% higher compared to the reference (Tamax 15 °C and PM10 15 μg/m3). Persons above age 85 living alone were at highest risk.ConclusionWe found significant synergistic effects of high temperatures and air pollution on mortality. Single living elderly were the most vulnerable group. Due to spatial differences in temperature and air pollution, mortality risks varied substantially between neighbourhoods, with a difference up to 7%.  相似文献   

8.
BackgroundThe underlying intermediate mechanisms about the association between fine particulate matter (PM2.5) air pollution and blood pressure (BP) were unclear. Few epidemiological studies have explored the potential mediation effects of angiotensin-converting enzyme (ACE) and its DNA methylation.MethodsWe designed a longitudinal panel study with 4 follow-ups among 36 healthy college students in Shanghai, China from December 17, 2014 to July 11, 2015. We measured personal real-time exposure to PM2.5, serum ACE level, and blood methylation of ACE gene and the repetitive elements. We applied linear mixed-effects models to examine the effects of PM2.5 on ACE protein, DNA methylation and BP markers. Furthermore, we conducted mediation analyses to evaluate the potential pathways.ResultsAn interquartile range increase (26.78 μg/m3) in 24-h average exposure to PM2.5 was significantly associated with 1.12 decreases in ACE average methylation (%5mC), 13.27% increase in ACE protein, and increments of 1.13 mmHg in systolic BP, 0.66 mmHg in diastolic BP and 0.82 mmHg in mean arterial pressure. ACE hypomethylation mediated 11.78% (P = 0.03) of the elevated ACE protein by PM2.5. Increased ACE protein accounted for 3.90 ~ 13.44% (P = 0.35 ~ 0.68) of the elevated BP by PM2.5. Repetitive-element methylation was also decreased but did not significantly mediate the association between PM2.5 and BP.ConclusionsThis investigation provided strong evidence that short-term exposure to PM2.5 was significantly associated with BP, ACE protein and ACE methylation. Our findings highlighted a possible involvement of ACE and ACE methylation in the effects of PM2.5 on elevating BP.  相似文献   

9.
BackgroundParticulate air pollution is a risk factor for cardiovascular diseases and thrombosis. Long-term exposure to particulate matter with a diameter < 10 μm (PM10) has been associated with an increased risk of venous thrombosis.ObjectivesThe aim of this study was to investigate whether or not particulate air pollution alters fibrin clot structure and thus modulates thrombosis risk.MethodsWe investigated fibrin polymerization by turbidity (maximum absorbance mOD), clot structure by confocal microscopy (fibre number per μm) and fibrin pore size by permeability (Ks × 10 10 cm2) in 103 patients with deep vein thrombosis and 121 healthy controls, for whom levels of air pollution exposure had been recorded. Exposure groups were defined by mean PM10 concentrations over the 730 days before the event.ResultsWe found a higher average number of fibres per clot area in patients than controls, but no difference in Ks or fibre thickness. When the two groups were divided into high or low exposure to PM10, a significantly denser fibrin clot network structure with thicker fibres (higher maximum absorbance, p < 0.05), decreased permeability (lower Ks value, p < 0.05) and higher average fibre numbers per clot area (p < 0.05) was observed in patients in the high exposure group compared to those with low exposure. There were no significant differences in fibrin clot structure between the two exposure levels in healthy subjects.ConclusionsPM10 levels are associated with altered fibrin clot structure in patients with deep vein thrombosis but not in controls, suggesting that air pollution may trigger differences in fibrin clot structure only in patients predisposed to thrombotic disease.  相似文献   

10.
BackgroundPhysical activity (PA) has beneficial, whereas exposure to traffic related air pollution (TRAP) has adverse, respiratory effects. Few studies, however, have examined if the acute effects of TRAP upon respiratory outcomes are modified depending on the level of PA.ObjectivesThe aim of our study was to disentangle acute effects of TRAP and PA upon respiratory outcomes and assess the impact of participants TRAP pre-exposure.MethodsWe conducted a real-world crossover study with repeated measures of 30 healthy adults. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Measures of respiratory function were collected at three time points. Pre-exposure to TRAP was ascertained from land-use-modeled address-attributed values. Mixed-effects models were used to estimate the impact of TRAP and PA on respiratory measures as well as potential effect modifications.ResultsWe found that PA was associated with a statistically significant increases of FEV1 (48.5 mL, p = 0.02), FEV1/FVC (0.64%, p = 0.005) and FEF25–75% (97.8 mL, p = 0.02). An increase in exposure to one unit (1 μg/m3) of PMcoarse was associated with a decrease in FEV1 (− 1.31 mL, p = 0.02) and FVC (− 1.71 mL, p = 0.01), respectively. On the other hand, for an otherwise equivalent exposure an increase of PA by one unit (1%Heart rate max) was found to reduce the immediate negative effects of particulate matter (PM) upon PEF (PM2.5, 0.02 L/min, p = 0.047; PM10, 0.02 L/min p = 0.02; PMcoarse, 0.03 L/min, p = 0.02) and the several hours delayed negative effects of PM upon FVC (PMcoarse, 0.11 mL, p = 0.02). The negative impact of exposure to TRAP constituents on FEV1/FVC and PEF was attenuated in those participants with higher TRAP pre-exposure levels.ConclusionsOur results suggest that associations between various pollutant exposures and respiratory measures are modified by the level of PA during exposure and TRAP pre-exposure of participants.  相似文献   

11.
BackgroundAssociations of ambient air pollutants with respiratory health are inconsistent.ObjectivesWe analyzed the associations of gestational and early life exposures to air pollutants with doctor-diagnosed asthma, allergic rhinitis, and pneumonia in children.MethodsWe selected 3358 preschool children who did not alter residences after birth from a cross-sectional study in 2011–2012 in Shanghai, China. Parents reported children's respiratory health history, home environment, and family lifestyle behaviors. We collected daily concentrations of sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) during the child's total lifetime (2006–2012) for each district where the children lived. We analyzed the associations using logistic regression models.ResultsAfter adjusting for covariates and the other studied pollutants, we found that exposure to NO2 (increment of 20 μg/m3) during the first year of life was significantly associated with asthma [odds ratio (OR) = 1.77; 95% confidence interval (CI): 1.29–2.43] and allergic rhinitis (OR = 1.67; 95% CI: 1.07–2.61). Exposure to NO2 during gestation, the first two and three years, and over total lifetimewas all consistently associated with increased odds of allergic rhinitis. Quartiles of NO2 concentration during different exposure periods showed a slight dose–response relationship with the studied diseases. These diseases had significant associations with pollutant mixtures that included NO2, but had no significant association with exposures to SO2 and PM10 individually or in mixtures.ConclusionsGestational and early life exposures to ambient NO2 are risk factors for childhood respiratory diseases.  相似文献   

12.
Little is known regarding how the size distribution of particulate matter (PM) air pollution influences its effect on blood pressure (BP), especially among patients with diabetes. The objective of this study was to explore the short-term associations between size-fractionated PM and BP among diabetes patients. We scheduled 6 repeated BP examinations every 2 weeks from 13 April 2013 to 30 June 2013 in a panel of 35 type 2 diabetes mellitus patients recruited from an urban community in Shanghai, China. We measured real-time PM concentrations in the size range of 0.25 to 10 μm. We used linear mixed-effect models to examine the short-term association of size-fractionated PM and BP after controlling for individual characteristics, mean temperature, relative humidity, day of the week, years with diabetes and use of antihypertensive medication. The association with systolic BP and pulse pressure strengthened with decreasing diameter. The size fractions with the strongest associations were 0.25 to 0.40 μm for number concentrations and ≤ 2.5 μm for mass concentrations. Furthermore, these effects occurred immediately even after 0–2 h and lasted for up to 48 h following exposure. An interquartile range increase in 24-h average number concentrations of PM0.25–0.40 was associated with increases of 3.61 mm Hg in systolic BP and 2.96 mm Hg in pulse pressure. Females, patients younger than 65 years of age and patients without antihypertensive treatment were more susceptible to these effects. Our results revealed important size and temporal patterns of PM in elevating BP among diabetes patients in China.  相似文献   

13.
Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM2.5 levels (1.3 × 101 to 2.9 × 101 μg/m3 for indoor; 9.5 to 8.8 × 101 μg/m3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5 × 101 μg/m3). Indoor PM2.5 mass concentrations were correlated with outdoor PM2.5 in four of the kindergartens. The PBDEs (0.10–0.64 ng/m3 in PM2.5; 0.30–2.0 × 102 ng/g in dust) and DP (0.05–0.10 ng/m3 in PM2.5; 1.3–8.7 ng/g in dust) were detected in 100% of the PM2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by > 7-fold from 8.8 × 102 ng/m 3 to 6.7 × 103 ng/m 3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7 × 101 μg/m3 to 9.3 × 101 μg/m3 indoors and from 1.9 × 101 μg/m3 to 4.3 × 101 μg/m3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E  05 to 2.1E  04 indoors and from 1.9E  05 to 6.2E  05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments.  相似文献   

14.
BackgroundFew studies have examined the link between air pollution exposure and behavioural problems and learning disorders during late childhood and adolescence.ObjectivesTo determine whether traffic-related air pollution exposure is associated with hyperactivity/inattention, dyslexia and dyscalculia up to age 15 years using the German GINIplus and LISAplus birth cohorts (recruitment 1995–1999).MethodsHyperactivity/inattention was assessed using the German parent-completed (10 years) and self-completed (15 years) Strengths and Difficulties Questionnaire. Responses were categorized into normal versus borderline/abnormal. Parent-reported dyslexia and dyscalculia (yes/no) at age 10 and 15 years were defined using parent-completed questionnaires. Individual-level annual average estimates of nitrogen dioxide (NO2), particulate matter (PM)10 mass, PM2.5 mass and PM2.5 absorbance concentrations were assigned to each participant's birth, 10 year and 15 year home address. Longitudinal associations between the air pollutants and the neurodevelopmental outcomes were assessed using generalized estimation equations, separately for both study areas, and combined in a random-effects meta-analysis. Odds ratios and 95% confidence intervals are given per interquartile range increase in pollutant concentration.ResultsThe prevalence of abnormal/borderline hyperactivity/inattention scores and parental-reported dyslexia and dyscalculia at 15 years of age was 12.9%, 10.5% and 3.4%, respectively, in the combined population (N = 4745). In the meta- analysis, hyperactivity/inattention was associated with PM2.5 mass estimated to the 10 and 15 year addresses (1.12 [1.01, 1.23] and 1.11 [1.01, 1.22]) and PM2.5 absorbance estimated to the 10 and 15 year addresses (1.14 [1.05, 1.25] and 1.13 [1.04, 1.23], respectively).ConclusionsWe report associations suggesting a potential link between air pollution exposure and hyperactivity/inattention scores, although these findings require replication.  相似文献   

15.
BackgroundAmbient particulate matter (PM) exposure has been associated with short- and long-term effects on cardiovascular disease (CVD). Telomere length (TL) is a biomarker of CVD risk that is modified by inflammation and oxidative stress, two key pathways for PM effects. Whether PM exposure modifies TL is largely unexplored.ObjectivesTo investigate effects of PM on blood TL in a highly-exposed population.MethodsWe measured blood TL in 120 blood samples from truck drivers and 120 blood samples from office workers in Beijing, China. We measured personal PM2.5 and Elemental Carbon (EC, a tracer of traffic particles) using light-weight monitors. Ambient PM10 was obtained from local monitoring stations. We used covariate-adjusted regression models to estimate percent changes in TL per an interquartile-range increase in exposure.ResultsCovariate-adjusted TL was higher in drivers (mean = 0.87, 95%CI: 0.74; 1.03) than in office workers (mean = 0.79, 95%CI: 0.67; 0.93; p = 0.001). In all participants combined, TL increased in association with personal PM2.5 (+ 5.2%, 95%CI: 1.5; 9.1; p = 0.007), personal EC (+ 4.9%, 95%CI: 1.2; 8.8; p = 0.01), and ambient PM10 (+ 7.7%, 95%CI: 3.7; 11.9; p < 0.001) on examination days. In contrast, average ambient PM10 over the 14 days before the examinations was significantly associated with shorter TL (− 9.9%, 95%CI: − 17.6; − 1.5; p = 0.02).ConclusionsShort-term exposure to ambient PM is associated with increased blood TL, consistent with TL roles during acute inflammatory responses. Longer exposures may shorten TL as expected after prolonged pro-oxidant exposures. The observed TL alterations may participate in the biological pathways of short- and long-term PM effects.  相似文献   

16.
BackgroundPrenatal exposure to air pollutants has recently been identified as a potential risk factor for neuropsychological impairment.ObjectivesTo assess whether prenatal exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and benzene were associated with impaired development in infants during their second year of life.MethodsRegression analyses, based on 438 mother–child pairs, were performed to estimate the association between mother exposure to air pollutants during pregnancy and neurodevelopment of the child. The average exposure to PM2.5, NO2 and benzene over the whole pregnancy was calculated for each woman. During the second year of life, infant neuropsychological development was assessed using the Bayley Scales of Infant Development. Regression analyses were performed to estimate the association between exposure and outcomes, accounting for potential confounders.ResultsWe estimated that a 1 μg/m3 increase during pregnancy in the average levels of PM2.5 was associated with a − 1.14 point decrease in motor score (90% CI: − 1.75; − 0.53) and that a 1 μg/m3 increase of NO2 exposure was associated with a − 0.29 point decrease in mental score (90% CI: − 0.47; − 0.11). Benzene did not show any significant association with development. Considering women living closer (≤ 100 m) to metal processing activities, we found that motor scores decreased by − 3.20 (90% CI: − 5.18; − 1.21) for PM2.5 and − 0.51 (− 0.89; − 0.13) for NO2, while mental score decreased by − 2.71 (90% CI: − 4.69; − 0.74) for PM2.5, and − 0.41 (9% CI: − 0.76; − 0.06) for NO2.ConclusionsOur findings suggest that prenatal residential exposure to PM2.5 and NO2 adversely affects infant motor and cognitive developments. This negative effect could be higher in the proximity of metal processing plants.  相似文献   

17.
ObjectiveRheumatoid arthritis (RA) has been associated with inhaled pollutants in several studies, and it is a disease of chronic inflammation. The association between air pollution and the risk of RA remains unclear. Therefore, we conducted this nationwide, retrospective, sex-stratification study to evaluate this association.MethodsWe collected data from the Longitudinal Health Insurance Database (LHID), maintained by the Taiwan Bureau of National Health Insurance, and the Taiwan Air Quality-Monitoring Database (TAQMD), released by the Taiwan Environmental Protection Agency. The TAQMD provides the daily concentrations of particulate matter with the aerodynamic diameter < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) from 74 ambient air quality-monitoring stations distributed all over Taiwan during 1998–2010. The LHID and TAQMD were linked according to the residential areas of insurants and the areas where the air quality-monitoring stations were located. A residential area was defined according to the location of the clinic and hospital that treated acute upper respiratory tract infections. The yearly average air pollutant concentrations were categorized into 4 levels based on quartiles. We evaluated the risk of RA in residents exposed to 4 levels of PM2.5 and NO2 concentrations.ResultsWe detected an increased risk of RA in participants exposed to PM2.5 and NO2. Among four quartiles of NO2 concentration, namely Q1, Q2, Q3, and Q4, the adjusted hazard ratios (aHRs) in Q2, Q3, and Q4 compared with that in Q1 were 1.07 (95% confidence interval [CI] = 0.76–1.50), 1.63 (95% CI = 1.16–2.31),and 1.49 (95% CI = 1.05–2.12), respectively. Regarding the PM2.5 concentrations, the aHRs after exposure to the Q2, Q3, and Q4 levels were 1.22 (95% CI = 0.85–1.74), 1.15 (95% CI = 0.82–1.62), and 0.79 (95% CI = 0.53–1.16), respectively.ConclusionThe results of this nationwide study suggest an increased risk of RA in residents exposed to NO2.  相似文献   

18.
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space–time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n = 9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n = 10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r = 0.93) for PM2.5 and moderate (r = 0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r = 0.77) than the model ignoring space–time activity (r = 0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space–time activity (r =  0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r =  0.42 to 0.03). In this urban area, accounting for space–time activity little influenced exposure estimates; in a subgroup of subjects (n = 9), incorporating indoor pollution levels seemed to strongly modify them.  相似文献   

19.
BackgroundSpatially resolved exposure models are increasingly used in epidemiology. We previously reported that, although exhibiting a moderate correlation, pregnancy nitrogen dioxide (NO2) levels estimated by the nearest air quality monitoring station (AQMS) model and a geostatistical model, showed similar associations with infant birth weight.ObjectivesWe extended this study by comparing a total of four exposure models, including two highly spatially resolved models: a land-use regression (LUR) model and a dispersion model. Comparisons were made in terms of predicted NO2 and particle (aerodynamic diameter < 10 μm, PM10) exposure and adjusted association with birth weight.MethodsThe four exposure models were implemented in two French metropolitan areas where 1026 pregnant women were followed as part of the EDEN mother–child cohort.ResultsCorrelations between model predictions were high (≥ 0.70), except for NO2 between the AQMS and both the LUR (r = 0.54) and dispersion models (r = 0.63). Spatial variations as estimated by the AQMS model were greater for NO2 (95%) than for PM10 (22%). The direction of effect estimates of NO2 on birth weight varied according to the exposure model, while PM10 effect estimates were more consistent across exposure models.ConclusionsFor PM10, highly spatially resolved exposure model agreed with the poor spatial resolution AQMS model in terms of estimated pollutant levels and health effects. For more spatially heterogeneous pollutants like NO2, although predicted levels from spatially resolved models (all but AQMS) agreed with each other, our results suggest that some may disagree with each other as well as with the AQMS regarding the direction of the estimated health effects.  相似文献   

20.
BackgroundAlthough metals can adversely impact children's health, the distribution of exposures to many metals, particularly among vulnerable subpopulations, is not well characterized.ObjectivesWe sought to determine whether neighborhood deprivation was associated with urinary concentrations of thirteen metals and whether observed relationships varied by race/ethnicity.MethodsWe obtained neighborhood characteristics from the 2005–2009 American Community Survey. Demographic information and urine samples from 400 healthy young girls in Northern California were obtained during a clinical visit. Urine samples were analyzed for metals using inductively-coupled plasma-mass spectrometry and levels were corrected for creatinine. We ran analysis of variance and generalized linear regression models to estimate associations of urinary metal concentrations with neighborhood deprivation and race/ethnicity and stratified multivariable models to evaluate possible interactions among predictors on metals concentrations.ResultsUrinary concentrations of three metals (barium, lead, antimony) varied significantly across neighborhood deprivation quartiles, and four (barium, lead, antimony, tin) varied across race/ethnicity groups. In models adjusted for family income and cotinine, both race/ethnicity (F3,224 = 4.34, p = 0.01) and neighborhood deprivation (F3,224 = 4.32, p = 0.01) were associated with antimony concentrations, but neither were associated with lead, barium, or tin, concentrations. Examining neighborhood deprivation within race/ethnicity groups, barium levels (pinteraction < 0.01) decreased with neighborhood deprivation among Hispanic girls (ptrend < 0.001) and lead levels (pinteraction = 0.06) increased with neighborhood deprivation among Asian girls (ptrend = 0.04).ConclusionsOur results indicate that children's vulnerability to some metals varies by neighborhood deprivation quartile and race/ethnicity. These differential distributions of exposures may contribute to environmental health disparities later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号