首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human biomonitoring is a valid method to determine exposure, identify time trends, and monitor the effects of restrictions and measures. To characterize the recent exposure of Germans to persistent or emerging substances, we analyzed 4 dechloranes, 33 polychlorinated naphthalenes (PCNs), and 3 cyclic volatile methyl siloxanes (cVMS) in 42 plasma samples. The samples were collected from blood donors on a random selection.The median values of both Dechlorane Plus (DDC-CO) isomers were 1.23 ng/g l.w. for anti- and 0.77 ng/g l.w. for syn–DDC-CO. The two other dechloranes were found at lower levels. The median level of ∑  PCNs was 575 pg/g l.w. (range: 101–1406 pg/g l.w.). On average, the levels of PCNs in plasma were dominated by the congeners CN73, CN66/67, and CN51, which were responsible for approximately 71% of the total amount of PCNs. The cVMS octa-, deca-, and dodecamethylcyclotetrasiloxane could be determined in only some samples, with maximum values of 0.73, 0.48, and 0.79 μg/l, respectively.Regarding dechloranes, our results are similar to those from other western countries but slightly lower than results from China. The levels of PCNs in German blood are similar to those observed in the U.S.A., but considerably lower than those reported for Korea. Using a preliminary TEF (toxic equivalency factor), the mean TEQ of the 9 quantifiable PCNs in Germany was low (0.36 pg TEQ/g l.w.). The PCN levels in our study group are lower compared to previous studies.  相似文献   

2.
To assess occupational exposure, we determined the concentrations of PCDD/Fs and PCBs in human serum samples from 26 incinerator workers (10 industrial waste and 16 municipal solid waste incinerator workers), 38 residents near the facilities and 7 inhabitants (as control subjects) living over 10 km away from any incinerator facilities in Korea. The mean TEQWHO levels of PCDD/Fs in the industrial and MSWI workers were 41.57 and 9.86 pg TEQWHO g? 1 lipid, respectively. For the residents, the mean TEQWHO was 13.47 pg TEQWHO g? 1 lipid (residents near IWI, MSWI, and control subjects: 17.64, 13.31, and 6.91 pg TEQWHO g? 1 lipid). Higher levels of certain PCDD/F congeners, mainly PCDFs, were detected in the serum of industrial incinerator workers in comparison to the levels measured in the residents. Significant differences were observed for PCDFs, the major compounds were OCDF, 1,2,3,4,6,7,8-HpCDF, and the minor components 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, and 2,3,4,6,7,8-HxCDF (p < 0.01). The PCDD/F congener patterns and concentrations measured in the 71 serum samples examined suggest that the industrial incinerator workers were exposed to PCDD/Fs in the workplace, possibly through inhalation and/or skin contact. In contrast, the levels and congener patterns of PCBs measured were similar in all subjects, indicating that workers from the incinerator facilities examined were not subjected to additional exposure to these compounds.  相似文献   

3.
The formation and environmental release of highly toxic organohalogen compounds associated with informal recycling of waste electric and electronic equipment (e-waste) is a growing problem at e-waste dumps/recycling sites (EWRSs) in many developing countries worldwide. We chose a cross-sectional study design to measure the internal exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) as well as polychlorinated biphenyls (PCBs) of individuals working on one of the largest EWRSs of Africa, located at Agbogbloshie, Accra, Ghana, and in controls from a suburb of Accra without direct exposure to EWRS activities. In whole blood samples of 21 age matched male exposed individuals (mean age: 24.7 years, SD 6.0) and 21 male controls (mean age: 24.4 years, SD 5.7) 17 PCDD/F congeners were determined. Moreover three indicator PCB congeners (#138, #153 and #180) were measured in blood of 39 exposed (mean age: 27.5 years, SD 11.7) and 19 non-exposed (mean age: 26.8 years, SD 9.7) patients. Besides a health examination, biometric and demographic data, residential and occupational history, occupational exposures and working conditions were recorded using a standardized questionnaire. In the exposed group, median PCDD/F-concentrations were 6.18 pg/g lipid base WHO2005-TEq (range: 2.1–42.7) and significantly higher compared to the control group with 4.60 pg/g lipid base WHO2005-TEq (range: 1.6–11.6). Concentrations were different for 2,3,7,8-TetraCDD, three HexaCDD and all 10 PCDF congeners, indicating a combustion pattern. Using a multivariate regression analysis exposure to EWRS activities was the most important determinant for PCDD/F exposure. Median PCB levels for the indicator congeners #138, #153 and #180 were 0.011, 0.019 and 0.008 μg/l whole blood (ranges: 0.002–0.18, 0.003–0.16, 0.002–0.078) in the exposed group and, surprisingly, significantly higher in the controls (0.037, 0.062 and 0.022; ranges: 0.005–0.46, 0.010–0.46, 0.004–0.21). In a multivariate regression approach e-waste related activities had no positive influence on internal PCB exposure, but rather the time living in Accra. The internal PCB exposure is in particular notable for a country where PCBs have historically never been produced or used. The impact of EWRS activities on organohalogen compound exposure of individuals working at and living in the surroundings of the Agbogbloshie EWRS, and the surprisingly high PCB exposure of people living in Accra not involved in e-waste activities require further investigation.  相似文献   

4.
Concentrations of persistent organochlorine compounds (OCs) including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) in the liver and adipose tissue of Japanese cadavers were measured, and their toxicokinetics were examined in association with hepatic cytochrome P450 (CYP) 1A protein expression levels. Total 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were 66 ± 74 and 65 ± 57 pg/g lipid weight (mean ± S.D.) in the liver and adipose tissue, respectively. Total PCBs (sum of 62 congeners targeted), p,p′-dichlorodiphenyl-dichloroethylene (p,p′-DDE) and β-hexachlorocyclohexane (β-HCH) were detected at concentrations over 1 μg/g lipid in both tissues of some specimens. For most of the dioxin-like congeners, total PCBs, p,p′-DDE, oxychlordane, α- and β-HCH, hexachlorobenzene (HCB), and tris(4-chlorophenyl)methane (TCPMe), age-dependent increases in concentrations were found in the adipose tissue of males. No such age-dependent trend was observed in the liver, suggesting that there are different mechanisms underlying the hepatic concentrations of OCs. Immunoblot analyses indicated detectable expression of hepatic CYP1A2 protein, whereas no CYP1A1 protein was detected. The CYP1A2 expression levels were positively correlated with concentrations (on wet weight basis) of 2,3,4,7,8-P5CDF, the dominant TEQ-contributed congeners in the liver, indicating the induction of this CYP. Hepatic CYP1A2 protein levels were strongly correlated with the liver to adipose concentration (L/A) ratios of PCDD/F congeners with more than 5 chlorine atoms. Together with higher concentrations of the congeners in the liver than in the adipose tissue, the observation on L/A ratios of highly chlorinated PCDD/Fs suggests that induced hepatic CYP1A2 protein is involved in their sequestration in this human population, as observed in model animals (rodents). Nonetheless, the magnitude of hepatic sequestration (L/A ratio) of PCDD/Fs in this human population was lower than in other mammals and birds, reported previously. This study emphasizes the fact that toxicokinetics of some OCs can be affected at least partly by CYP1A2 protein levels in humans. For the extrapolation of their toxicokinetics from model animals to humans, knowledge on the induction and sequestration potencies of CYP1A is necessary.  相似文献   

5.
Concentrations of 14 polybrominated diphenyl ether (PBDEs) and 28 polychlorinated biphenyl (PCBs) congers were measured in 137 samples of fish and meat from Nanjing, a city in the Yangtze River Delta, China. Total concentrations of PBDEs were less in fish (mean of 180 pg/g ww; range 8.0–1100 pg/g ww), but more in non fish foods (mean of 180 pg/g ww; range 15–950 pg/g ww) than those reported from other countries. The total dietary intake of PBDEs and PCBs by humans were 9.9 ng PBDE/d and 870 ng PCB/d, respectively. The daily intake by a 60 kg adult of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQWHO) from PCBs was estimated to be 49 pg PCBTEQWHO/d (0.82 pg PCBTEQWHO/kg bw), which is less than the tolerable daily intake suggested by the World Health Organization (WHO). The daily intake of meat and fish accounted for 57.2% and 42.8% of the total intake of PCBTEQWHO.  相似文献   

6.
Harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) are top predators in the North Sea and consequently accumulate a variety of pollutants in their tissues. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (HO-PCBs and HO-PBDEs) were measured in serum of wild harbour seals (n = 47) and captive harbour porpoises (n = 21). Both species exhibit long life spans and do not have extreme situations, such as complete fasting during periods of lactation, in their annual cycles. For PCBs, concentrations in adult males were slightly higher than in juveniles and lowest in juvenile females. For PBDEs, juveniles have higher levels than adult males and females, probably as a consequence of lactational transfer. However, differences between these age–gender groups were not statistical significant, indicating that individual variation was limited within each species, even without knowing the feeding status of the animals. Body condition, particularly emaciation, has a major influence on the levels of chlorinated and brominated contaminants in serum. Profiles of PCBs were CB 153 > CB 138 > CB 187 > CB 180 and CB 153 > CB 138 > CB 149 > CB 187 > CB 180 for harbour seals and porpoises respectively. For PBDEs, BDE 47 was the predominant congener followed by BDE 100 and 99 in both species. In harbour seals, concentrations of sum PCBs (median: 39,200 pg/ml) were more than 200 times higher than levels of sum PBDEs (median: 130 pg/ml) and almost 10 times higher than concentrations of sum HO-PCBs (4350 pg/ml). In harbour porpoises, concentrations of sum PCBs (median: 24,300 pg/ml) were about 20 times higher than concentrations of PBDEs (median: 1300 pg/ml). HO-PCBs were detected in only 4 harbour porpoises and this at very low concentrations. Naturally-produced MeO-PBDEs were only found in harbour porpoises at concentrations ranging from 120 to 810 pg/ml. HO-PBDEs were not found in any species. In general, harbour seals accumulate less compounds and have mostly lower concentrations than harbour porpoises possibly as a result of a better developed metabolism.  相似文献   

7.
Breast milk samples (n = 74) from the general maternal population of Zhejiang province were analyzed for polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Samples were divided into urban and rural groups. Mean ∑PCDD/F, ∑PCB and ∑PBDE concentrations were 71.4 ± 40.8, 42774 ± 27841 and 2679 ± 944 pg g 1 lipid in the urban group and 38.6 ± 38.1, 26546 ± 11375 and 2731 ± 1093 pg g 1 lipid in the rural group, respectively. WHO-TEQ concentrations for dioxin-like PCBs and PCDD/Fs were 2.66 ± 1.43 and 3.90 ± 2.60 pg g 1 lipid in the urban group and 1.83 ± 0.93 and 2.27 ± 1.55 pg g 1 lipid in the rural group, respectively. Congener profiles for these pollutants were compared between human samples (adipose tissue and breast milk) and foodstuffs (seafood, hen eggs, and freshwater fish). Similar PCB and PCDD/F congener patterns were observed, suggesting that dietary intake is a significant source for human exposure to PCBs and PCDD/Fs. However, much lower PBDE congener levels were detected in breast milk than in foodstuffs, which implies that pathways other than dietary intake may also account for human exposure to PBDEs.  相似文献   

8.
Organosiloxanes are widely used in the formulation of a broad range of cosmetic and personal care products (PCPs), including creams and lotions, bath soaps, shampoo and hair care products to soften, smooth, and moisten. In fact, the intensive and widespread use of organosiloxanes combined with their lipophilic nature, makes them interesting targets for future research, particularly in the toxicology area.This study focused on determining the concentration levels of these compounds in the bestselling brands of PCPs in the Oporto region (Portugal), allowing the estimation of dermal and inhalation exposure to siloxanes and the evaluation of the quantities released to the environment “down-the-drain” and to air. To accomplish this task, a QuEChERS technique (“Quick, Easy, Cheap, Effective, Rugged, and Safe”) was employed to extract the siloxanes from the target PCPs, which has never been tested before. The resulting extract was analysed by gas chromatography–mass spectrometry (GC–MS). The limits of detection varied between 0.17 (L2) and 3.75 ng g 1 (L5), being much lower than any values reported in the literature for this kind of products. In general, satisfactory precision (< 10%) and accuracy values (average recovery of 84%) were obtained.123 PCPs were analysed (moisturizers, deodorants, body and hair washes, toilet soaps, toothpastes and shaving products) and volatile methylsiloxanes were detected in 96% of the samples, in concentrations between 0.003 μg g 1 and 1203 μg g 1. Shampoo exhibited the highest concentration for cyclic and aftershaves for linear siloxanes. Combining these results with the daily usage amounts, an average daily dermal exposure of 25.04 μg kgbw 1 day 1 for adults and 0.35 μg kgbw 1 day 1 for baby/children was estimated. The main contributors for adult dermal exposure were body moisturizers, followed by facial creams and aftershaves, while for babies/children were body moisturizers, followed by shower gel and shampoo. Similarly, the average daily inhalation exposure was also estimated. Values of 1.56 μg kgbw 1 day 1 for adults and 0.03 μg kgbw 1 day 1 for babies/children were calculated. An estimate of the siloxanes amount released “down-the-drain” into the sewage systems through the use of toiletries was also performed. An emission per capita between 49.25 and 9574 μg day 1 (mean: 1817 μg day 1) is expected and shampoo and shower gel presented the higher mean total values (1008 μg day 1 and 473.3 μg day 1, respectively). In the worst-case scenario, D5 and D3 were the predominant siloxanes in the effluents with 3336 μg day 1 and 3789 μg day 1, respectively. Regarding the air emissions per capita, values between 8.33 and 6109 μg day 1 (mean: 1607 μg day 1) are expected and D5 and D6 were the predominant siloxanes.  相似文献   

9.
BackgroundDioxins and PCBs accumulate in the food chain and might exert toxic effects in animals and humans. In large epidemiologic studies, exposure estimates of these compounds based on analyses of biological material might not be available or affordable.ObjectivesTo develop and then validate models for predicting concentrations of dioxins and PCBs in blood using a comprehensive food frequency questionnaire and blood concentrations.MethodsPrediction models were built on data from one study (n = 195), and validated in an independent study group (n = 66). We used linear regression to develop predictive models for dioxins and PCBs, both sums of congeners and 33 single congeners (7 and 10 polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), 12 dioxin-like polychlorinated biphenyls (PCBs: 4 non-ortho and 8 mono-ortho), sum of all the 29 dioxin-like compounds (total TEQ) and sum of 4 non dioxin-like PCBs (∑ CB-101, 138, 153, 183 = PCB4). We used the blood concentration and dietary intake of each of the above as dependent and independent variables, while sex, parity, age, place of living, smoking status, energy intake and education were covariates. We validated the models in a new study population comparing the predicted blood concentrations with the measured blood concentrations using correlation coefficients and Weighted Kappa (КW) as measures of agreement, considering КW > 0.40 as successful prediction.ResultsThe models explained 78% (sum dioxin-like compounds), 76% (PCDDs), 76% (PCDFs), 74% (no-PCBs), 69% (mo-PCBs), 68% (PCB4) and 63% (CB-153) of the variance. In addition to dietary intake, age and sex were the most important covariates.The predicted blood concentrations were highly correlated with the measured values, with r = 0.75 for dl-compounds 0.70 for PCB4, (p < 0.001) and 0.66 (p < 0.001) for CB-153. КW was 0.68 for sum dl-compounds 0.65 for both PCB4 and CB-153. Out of 33 congeners 16 (13 dl-compounds and 3 ndl PCBs) had КW > 0.40.ConclusionsThe models developed had high power to predict blood levels of dioxins and PCBs and to correctly rank subjects according to high or low exposure based on dietary intake and demographic information. These models underline the value of dietary intake data for use in investigations of associations between dioxin and PCB exposure and health outcomes in large epidemiological studies with limited biomaterial for chemical analysis.  相似文献   

10.
BackgroundAlthough metals can adversely impact children's health, the distribution of exposures to many metals, particularly among vulnerable subpopulations, is not well characterized.ObjectivesWe sought to determine whether neighborhood deprivation was associated with urinary concentrations of thirteen metals and whether observed relationships varied by race/ethnicity.MethodsWe obtained neighborhood characteristics from the 2005–2009 American Community Survey. Demographic information and urine samples from 400 healthy young girls in Northern California were obtained during a clinical visit. Urine samples were analyzed for metals using inductively-coupled plasma-mass spectrometry and levels were corrected for creatinine. We ran analysis of variance and generalized linear regression models to estimate associations of urinary metal concentrations with neighborhood deprivation and race/ethnicity and stratified multivariable models to evaluate possible interactions among predictors on metals concentrations.ResultsUrinary concentrations of three metals (barium, lead, antimony) varied significantly across neighborhood deprivation quartiles, and four (barium, lead, antimony, tin) varied across race/ethnicity groups. In models adjusted for family income and cotinine, both race/ethnicity (F3,224 = 4.34, p = 0.01) and neighborhood deprivation (F3,224 = 4.32, p = 0.01) were associated with antimony concentrations, but neither were associated with lead, barium, or tin, concentrations. Examining neighborhood deprivation within race/ethnicity groups, barium levels (pinteraction < 0.01) decreased with neighborhood deprivation among Hispanic girls (ptrend < 0.001) and lead levels (pinteraction = 0.06) increased with neighborhood deprivation among Asian girls (ptrend = 0.04).ConclusionsOur results indicate that children's vulnerability to some metals varies by neighborhood deprivation quartile and race/ethnicity. These differential distributions of exposures may contribute to environmental health disparities later in life.  相似文献   

11.
To investigate the assumed association between indoor air pollution with monoterpenes (MTps) and the internal MTp exposure of occupants, a comparative study was performed in daycare centers in two federal states of Germany. Three well-known monoterpenoid air pollutants, viz. α-pinene (αPN), Δ3-carene (CRN), and R-limonene (LMN), were measured in indoor air in 45 daycare centers. Additionally, urine samples of 222 children visiting these facilities were collected in the evening after a full-day stay. Altogether 11 MTp metabolites were analyzed in the urine samples using a novel highly sensitive and selective gas chromatographic–tandem-mass spectrometric procedure. The medians (95th percentiles) of the MTp levels in indoor air were 9.1 μg m 3 (94 μg m 3) for LMN, 2.6 μg m 3 (13 μg m 3) for αPN, and < 1.0 μg m 3 (3.2 μg m 3) for CRN. None of the day care centers exceeded the German health precaution or hazard guide value. In spite of the low MTp air exposure, the urine analyses revealed an exposure to the three monoterpenes in almost all children. The median levels of MTp metabolites in urine were 0.11 mg L 1 for LMN-8,9-OH, 0.10 mg L 1 for LMN-1,2-OH, 49 μg L 1 for PA, 2.9 μg L 1 for POH, 5.2 μg L 1 for tCAR, and 4.1 μg L 1 for cCAR (LMN metabolites), 7.2 μg L 1 for MYR, 19 μg L 1 for tVER, and 19 μg L 1 for cVER (αPN metabolites), as well as 8.2 μg L 1 for CRN-10-COOH (CRN metabolite). Statistically significant and strong correlations among the urinary metabolites of each MTp were found. Moreover, statistical associations between LMN metabolites and the LMN indoor air levels were revealed. However, the weakness of the associations indicates a considerable impact of other MTp sources, e.g. diet and consumer products, on the internal exposure.  相似文献   

12.
Levels of eight potentially toxic heavy metals in indoor dust from homes and offices in Istanbul were investigated. The concentrations of heavy metals in indoor dust from homes + office ranged from 62 to 1800 μg g 1 for Cu, 3–200 μg g 1 for Pb, 0.4–20 μg g 1 for Cd, 210–2800 μg g 1 for Zn, 2.8–460 μg g 1 for Cr, 8–1300 μg g 1 for Mn, 2.4–25 μg g 1 for Co, 120–2600 μg g 1 for Ni. Results of the study were comparable to other studies conducted on indoor dust and street dust from a variety of cities globally. Considering only ingestion + inhalation, the carcinogenic risk level of Cr for adults and children (3.7 × 10 5 and 2.7 × 10 5) in Istanbul was in the range of EPA's safe limits (1 × 10 6 and 1 × 10 4), indicating that cancer risk of Cr due to exposure to indoor dust in Istanbul can be acceptable. According to calculated Hazard Quotient (HQ), for non-cancer effects, the ingestion of indoor dust appears to be the major route of exposure to the indoor dust that results in a higher risk for heavy metals, followed by dermal contact and inhalation pathways. However, compared to ingestion and dermal contact exposure, exposure through inhalation is almost negligible. Hazard Index (HI) values for all studied elements were lower than safe limit of 1 and this result suggested that none of the population groups would likely to experience potential health risk due to exposure to heavy metals from indoor dust in the study area.  相似文献   

13.
Large-scale international monitoring studies are important to assess emission patterns and environmental distributions of organohalogenated contaminants (OHCs) on a worldwide scale. In this study, the presence of OHCs was investigated on three continents (Europe, North America and Australasia), using eggs of starlings (Sturnus vulgaris and Sturnus unicolor) to assess their suitability for large-scale monitoring studies. To the best of our knowledge, this is the first study using bird eggs of the same species as a biomonitor for OHCs on an intercontinental scale. We found significant differences in OHC concentrations of the eggs among sampling locations, except for hexachlorocyclohexanes (HCHs). Mean concentrations of sum polychlorinated biphenyls (PCBs) in eggs ranged from 78 ± 26 ng/g lipid weight (lw) in Australia to 2900 ± 1300 ng/g lw in the United States. The PCB profile was dominated by CB 153 and CB 138 in all locations, except for New Zealand, where the contribution of CB 95, CB 101 and CB 149 was also high. The highest mean sum polybrominated diphenyl ether (PBDE) concentrations were found in Canada (4400 ± 830 ng/g lw), while the lowest mean PBDE concentrations were measured in Spain (3.7 ± 0.1 ng/g lw). The PBDE profile in starling eggs was dominated by BDE 47 and BDE 99 in all countries, but in Belgium, the higher brominated PBDEs had a higher contribution compared to other countries. For the organochlorine pesticides (OCPs), dichlorodiphenyltrichloroethanes (DDTs) ranged from 110 ± 16 ng/g lw in France to 17,000 ± 3400 ng/g lw in New Zealand, while HCHs and hexachlorobenzene were generally in low concentrations in all sampling locations. Chlordanes were remarkably high in eggs from the United States (2500 ± 1300 ng/g lw). The OCP profile in all countries was largely dominated by p,p′-DDE. In general, the worldwide trends we observed in starling eggs were in accordance with the literature on human and environmental OHC data, which suggests that there is potential for using starling eggs as a biomonitoring tool on a large geographical scale.  相似文献   

14.
BackgroundPhysical activity (PA) has beneficial, whereas exposure to traffic related air pollution (TRAP) has adverse, respiratory effects. Few studies, however, have examined if the acute effects of TRAP upon respiratory outcomes are modified depending on the level of PA.ObjectivesThe aim of our study was to disentangle acute effects of TRAP and PA upon respiratory outcomes and assess the impact of participants TRAP pre-exposure.MethodsWe conducted a real-world crossover study with repeated measures of 30 healthy adults. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Measures of respiratory function were collected at three time points. Pre-exposure to TRAP was ascertained from land-use-modeled address-attributed values. Mixed-effects models were used to estimate the impact of TRAP and PA on respiratory measures as well as potential effect modifications.ResultsWe found that PA was associated with a statistically significant increases of FEV1 (48.5 mL, p = 0.02), FEV1/FVC (0.64%, p = 0.005) and FEF25–75% (97.8 mL, p = 0.02). An increase in exposure to one unit (1 μg/m3) of PMcoarse was associated with a decrease in FEV1 (− 1.31 mL, p = 0.02) and FVC (− 1.71 mL, p = 0.01), respectively. On the other hand, for an otherwise equivalent exposure an increase of PA by one unit (1%Heart rate max) was found to reduce the immediate negative effects of particulate matter (PM) upon PEF (PM2.5, 0.02 L/min, p = 0.047; PM10, 0.02 L/min p = 0.02; PMcoarse, 0.03 L/min, p = 0.02) and the several hours delayed negative effects of PM upon FVC (PMcoarse, 0.11 mL, p = 0.02). The negative impact of exposure to TRAP constituents on FEV1/FVC and PEF was attenuated in those participants with higher TRAP pre-exposure levels.ConclusionsOur results suggest that associations between various pollutant exposures and respiratory measures are modified by the level of PA during exposure and TRAP pre-exposure of participants.  相似文献   

15.
Although the transfer of organo-metallic mercury (OrgHg) in aquatic food webs has long been studied, it has only been recently recognized that there is also accumulation in terrestrial systems. There is still however little information about the exposure of grazing animals to OrgHg from soils and feed as well as on risks of exposure to animal and humans.In this study we collected 78 soil samples and 40 plant samples (Lolium perenne and Brassica juncea) from agricultural fields near a contaminated industrial area and evaluated the soil-to-plant transfer of Hg as well as subsequent trophic transfer. Inorganic Hg (IHg) concentrations ranged from 0.080 to 210 mg kg 1 d.w. in soils, from 0.010 to 84 mg kg 1 d.w. in roots and from 0.020 to 6.9 mg kg 1 d.w. in shoots. OrgHg concentrations in soils varied between 0.20 and 130 μg kg 1 d.w. representing on average 0.13% of the total Hg (THg). In root and shoot samples OrgHg comprised on average 0.58% (roots) and 0.66% (shoots) of THg. Average bioaccumulation factors (BAFs) for OrgHg in relation to soil concentrations were 3.3 (for roots) and 1.5 (for shoots).The daily intake (DI) of THg in 33 sampling sites exceeded the acceptable daily intake (ADI) of THg of both cows (ADI = 1.4 mg d 1) and sheep (ADI = 0.28 mg d 1), in view of food safety associated with THg in animal kidneys. Estimated DI of OrgHg for grazing animals were up to 220 μg d 1 (for cows) and up to 33 μg d 1 (for sheep).This study suggested that solely monitoring the levels of THg in soils and feed may not allow to adequately taking into account accumulation of OrgHg in feed crops and properly address risks associated with OrgHg exposure for animals and humans. Hence, the inclusion of limits for OrgHg in feed quality and food safety legislation is advised.  相似文献   

16.
IntroductionLong-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France.ObjectivesWe analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013.MethodsThe study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations.ResultsThe cohort recorded 1967 non-accidental deaths. Long-term exposures to baseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR = 1.09;95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR = 1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR = 1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality.ConclusionLong-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger representative population sample.  相似文献   

17.
The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2 μg L 1) and sediments (ΣOPFRs ranging 3.8 to 824 μg kg 1). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812 μg kg 1 and decabromodiphenyl ethane (DBDPE) reached 435 μg kg 1 in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31–381 mg L 1). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs < 1) was observed for any of the monitored rivers.  相似文献   

18.
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤ 2.5 or 10 μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2 days before) and chronic (365 days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n = 894) of the children (n = 310) reflected slower Stroop Test (p = 0.05) and Digit-Symbol Test (p = 0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087 s (SE: ± 0.034; p = 0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45 ± 3.47 msec; p = 0.007) and Stroop Tests (59.9 ± 26.5 msec; p = 0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.  相似文献   

19.
The concentrations of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were determined in a number of foodstuffs purchased in various locations near a hazardous waste incinerator (HWI) in Tarragona County (Catalonia, Spain). The dietary intake of PCDD/Fs by the population of the area under potential influence of the HWI was subsequently estimated. The results were compared with previous surveys performed in the same area in 1998 (baseline), 2002 and 2006. In the present study, the highest WHO-TEQ corresponded to industrial bakery (0.183 ng/kg wet weight, ww), followed by fish (0.156 ng/kg ww), oils and fats (0.112 ng/kg fat weight), and seafood (0.065 ng/kg ww). In contrast, the lowest values were observed in pulses and tubers (0.003 ng/kg ww), and cereals and fruits (0.004 ng/kg ww). The dietary intake of PCDD/Fs by the general population was 33.1 pg WHO-TEQ/day, having fish and seafood (11.6 pg WHO-TEQ), oils and fats (4.61 pg WHO-TEQ), dairy products (3.79 pg WHO-TEQ), and industrial bakery (3.49 pg WHO-TEQ) as the groups showing the highest contribution to the total TEQ. The lowest daily contributions corresponded to pulses (0.08 pg WHO-TEQ) and tubers (0.25 pg WHO-TEQ). This intake was considerably lower than that found in the baseline study, 210.1 pg I-TEQ/day, and also notably lower than that found in the 2002 survey (59.6 pg I-TEQ/day), but slightly higher than the intake estimated in the 2006 survey, 27.8 pg WHO-TEQ/day. The results of this study show that any increase potentially found in the biological monitoring of the general population living in the area under evaluation should not be attributed to dietary exposure to PCDD/Fs.  相似文献   

20.
Increased use of flame-retardants in office furniture may increase exposure to PBDEs in the office environment. However, partitioning of PBDEs within the office environment is not well understood. Our objectives were to examine relationships between concurrent measures of PBDEs in office air, floor dust, and surface wipes.We collected air, dust, and surface wipe samples from 31 offices in Boston, MA. Correlation and linear regression were used to evaluate associations between variables. Geometric mean (GM) concentrations of individual BDE congeners in air and congener specific octanol–air partition coefficients (Koa) were used to predict GM concentrations in dust and surface wipes and compared to the measured concentrations.GM concentrations of PentaBDEs in office air, dust, and surface wipes were 472 pg/m3, 2411 ng/g, and 77 pg/cm2, respectively. BDE209 was detected in 100% of dust samples (GM = 4202 ng/g), 93% of surface wipes (GM = 125 pg/cm2), and 39% of air samples. PentaBDEs in dust and air were moderately correlated with each other (r = 0.60, p = 0.0003), as well as with PentaBDEs in surface wipes (r = 0.51, p = 0.003 for both dust and air). BDE209 in dust was correlated with BDE209 in surface wipes (r = 0.69, p = 0.007). Building (three categories) and PentaBDEs in dust were independent predictors of PentaBDEs in both air and surface wipes, together explaining 50% (p = 0.0009) and 48% (p = 0.001) of the variation respectively. Predicted and measured concentrations of individual BDE congeners were highly correlated in dust (r = 0.98, p < 0.0001) and surface wipes (r = 0.94, p = 002). BDE209 provided an interesting test of this equilibrium partitioning model as it is a low volatility compound.Associations between PentaBDEs in multiple sampling media suggest that collecting dust or surface wipes may be a convenient method of characterizing exposure in the indoor environment. The volatility of individual congeners, as well as physical characteristics of the indoor environment, influence relationships between PBDEs in air, dust, and surface wipes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号