首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
This paper aims to present an assessment of the environmental radiological exposure at a Brazilian area of high natural radiation and discusses the indoor radon exposure risk. A survey of inhabitant exposures arising from the inhalation of radon progeny and external gamma exposure was conducted in urban and rural areas of the Po?os de Caldas Plateau, which is recognized worldwide as a high natural radiation region. The results of this survey indicated that highest radiation exposure was restricted to the rural area of Po?os de Caldas. The radiation exposure in urban locations was quite similar to the values observed in normal background areas in some Brazilian counties. By the application of a constant relative risk model, an additional 20% in the lifetime risk of lung cancer mortality due to the exposure to radon progeny was estimated at Po?os de Caldas. It was also estimated that 16% of all lung cancer deaths at Po?os de Caldas county could be attributable to radon exposure.  相似文献   

2.
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space–time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n = 9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n = 10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r = 0.93) for PM2.5 and moderate (r = 0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r = 0.77) than the model ignoring space–time activity (r = 0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space–time activity (r =  0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r =  0.42 to 0.03). In this urban area, accounting for space–time activity little influenced exposure estimates; in a subgroup of subjects (n = 9), incorporating indoor pollution levels seemed to strongly modify them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号