首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2′-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4 μg/g Cre) were significantly higher (p < 0.05) than those found in both rural (11.7 μg/g Cre) and urban (10.9 μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6 μg/g Cre) showed significantly higher (p < 0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2 μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4 μg/g Cre) and non-smokers (24.7 μg/g Cre) were not significant (p > 0.05) in e-waste dismantling sites, while these differences were significant (p < 0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r = 0.284, p < 0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies.  相似文献   

2.
BackgroundHousehold air pollution (HAP) from indoor biomass stoves contains harmful pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and is a leading risk factor for global disease burden. We used biomonitoring to assess HAP exposure and association with self-reported symptoms in 334 non-smoking Peruvian women to evaluate the efficacy of a stove intervention program.MethodsWe conducted a cross-sectional study within the framework of a community randomized control trial. Using urinary PAH metabolites (OH-PAHs) as the exposure biomarkers, we investigated whether the intervention group (n = 155, with new chimney-equipped stoves) were less exposed to HAP compared to the control group (n = 179, with mostly open-fire stoves). We also estimated associations between the exposure biomarkers, risk factors, and self-reported health symptoms, such as recent eye conditions, respiratory conditions, and headache.ResultsWe observed reduced headache and ocular symptoms in the intervention group than the control group. Urinary 2-naphthol, a suggested biomarker for inhalation PAH exposure, was significantly lower in the intervention group (GM with 95% CI: 13.4 [12.3, 14.6] μg/g creatinine) compared to control group (16.5 [15.0, 18.0] μg/g creatinine). Stove type and/or 2-naphthol was associated with a number of self-reported symptoms, such as red eye (adjusted OR with 95% CI: 3.80 [1.32, 10.9]) in the past 48 h.ConclusionsEven with the improved stoves, the biomarker concentrations in this study far exceeded those of the general populations and were higher than a no-observed-genotoxic-effect-level, indicating high exposure and a potential for increased cancer risk in the population.  相似文献   

3.
ObjectivesThe aim of this study was to evaluate the massive efforts to lower water arsenic concentrations in Bangladesh.MethodsIn our large mother–child cohort in rural Matlab, we measured the arsenic concentrations (and other elements) in drinking water and evaluated the actual exposure (urinary arsenic), from early gestation to 10 years of age (n = 1017).ResultsMedian drinking water arsenic decreased from 23 (2002–2003) to < 2 μg/L (2013), and the fraction of wells exceeding the national standard (50 μg/L) decreased from 58 to 27%. Still, some children had higher water arsenic at 10 years than earlier. Installation of deeper wells (> 50 m) explained much of the lower water arsenic concentrations, but increased the manganese concentrations. The highest manganese concentrations (~ 900 μg/L) appeared in 50–100 m wells. Low arsenic and manganese concentrations (17% of the children) occurred mainly in > 100 m wells. The decrease in urinary arsenic concentrations over time was less apparent, from 82 to 58 μg/L, indicating remaining sources of exposure, probably through food (mean 133 μg/kg in rice).ConclusionDespite decreased water arsenic concentrations in rural Bangladesh, the children still have elevated exposure, largely from food. Considering the known risks of severe health effects in children, additional mitigation strategies are needed.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants generated mainly from incomplete combustion such as automobile exhaust and cigarette smoke. Oxidative stress is believed to be involved in carcinogenesis, and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was used as the biomarker to assess such DNA damage. The children's urinary PAH metabolite (OH-PAHs) level were explored in Guangzhou and their associations with 8-OHdG. Two groups of subjects were selected: (1) one group (n = 39, 6–7 years old) from an elementary school situated near a heavy traffic road (polluted area) and (2) another group (n = 35, 4–6 years old) from a kindergarten situated in a corner of the main campus of a big university (non-polluted area). Urinary 8-OHdG and nine urinary monohydroxylated PAH metabolites were measured, including 2-hydroxynaphthalene (2-OHN), 2-hydroxyfluorene (2-OHF), 2-, 3-, 4-, 9-hydroxyphenanthrene (2-, 3-, 4-, 9-OHPhe), 1-hydroxypyrene (1-OHP), 6-hydroxychrysene (6-OHChr) and 3-hydroxybenzo(a)pyrene (3-OHBaP). All other PAH metabolites were detected in urine samples from both children groups except for 6-OHChr and 3-OHBaP. Levels of 2-OHN, 2-OHF, 3-OHPhe, 9-OHPhe and 1-OHP were significantly different between two groups (P < 0.05, T-test). The elementary school children from the polluted area had higher urinary levels of 2-OHN, 2-OHF, 2-, 3-, 4-OHPhe and 1-OHP ((9.10 ± 7.39, 3.72 ± 2.91, 0.32 ± 0.50, 0.37 ± 0.28, 0.23 ± 0.29 and 0.64 ± 0.07 μmol/mol creatinine, respectively) than those from the control group. The results suggested that heavy traffic pollution led to higher PAH body burden. There existed no significant difference for urinary 8-OHdG concentration between two groups (p > 0.05, T-test), and no strong correlations between the individual OH-PAHs and 8-OHdG. However, the urinary 8-OHdG concentration in the elementary school children from the traffic polluted area was slightly higher than those in the non-polluted area (20.87 ± 14.42 μmol/mol creatinine vs. 16.78 ± 13.30 μmol/mol creatinine). It may be that the potential co-exposure of the children to other pollutants affects 8-OHdG concentration besides the PAHs.  相似文献   

5.
Background and goalsAs part of the authorization process for the solid waste incinerator (SWI) in Modena, Italy, a human biomonitoring cross-sectional pilot study was conducted to investigate the degree to which people living and working in the proximity of the plant were exposed to SWI emissions.MethodsBetween May and June 2010, 65 subjects living and working within 4 km of the incinerator (exposed) and 103 subjects living and working outside this area (unexposed) were enrolled in the study. Blood, serum and urinary metals (Pb, Cd, Cu, Zn, Hg, Mn, Ni), urinary benzene, toluene, xylene (BTEX), S-phenylmercapturic acid (SPMA), and urinary polycyclic aromatic hydrocarbons (PAHs) were analysed. Information about lifestyle, anthropometric characteristics, residence, and health status was collected by a self-administered questionnaire. Exposure to particulate matter (PM) emitted from the SWI was estimated using fall-out maps from a quasi-Gaussian dispersion model. A multiple linear regression analysis investigated the relationship between biomarkers and the distance of a subject's place of residence from the SWI plant or the exposure to PM.ResultsUrinary BTEX and SPMA and blood, serum and urinary metals showed no differences between exposed and unexposed subjects. PAHs were higher in exposed than in unexposed subjects for phenanthrene, anthracene, and pyrene (median levels: 9.5 vs. 7.2 ng/L, 0.8 vs. < 0.5 ng/L and 1.6 vs. 1.3 ng/L, respectively, p < 0.05). Multiple linear regression analysis showed that blood Cd and Hg and urinary Mn, fluorene, phenanthrene, anthracene and pyrene were inversely correlated to the distance of a subject's residence from the SWI. Urinary Mn, fluorene and phenanthrene were directly correlated to PM exposure.ConclusionsThis study, although not representative of the general population, suggests that specific biomarkers may provide information about the degree of exposure the subjects working and living in the proximity of the SWI plant may have to emissions from that facility.  相似文献   

6.
BackgroundN,N-diethyl-m-toluamide (DEET) is a widely used insect repellent in the United States.ObjectivesTo assess exposure to DEET in a representative sample of persons 6 years and older in the U.S. general population from the 2007–2010 National Health and Nutrition Examination Survey.MethodsWe analyzed 5348 urine samples by using online solid-phase extraction coupled to isotope dilution-high-performance liquid chromatography-tandem mass spectrometry. We used regression models to examine associations of various demographic parameters with urinary concentrations of DEET biomarkers.ResultsWe detected DEET in ~ 3% of samples and at concentration ranges (> 0.08 μg/L–45.1 μg/L) much lower than those of 3-(diethylcarbamoyl)benzoic acid (DCBA) (> 0.48 μg/L–30,400 μg/L) and N,N-diethyl-3-hydroxymethylbenzamide (DHMB) (> 0.09 μg/L–332 μg/L). DCBA was the most frequently detected metabolite (~ 84%). Regardless of survey cycle and the person's race/ethnicity or income, adjusted geometric mean concentrations of DCBA were higher in May–Sep than in Oct–Apr. Furthermore, non-Hispanic whites in the warm season were more likely than in the colder months [adjusted odds ratio (OR) = 10.83; 95% confidence interval (CI), 3.28–35.79] and more likely than non-Hispanic blacks (OR = 3.45; 95% CI, 1.51–7.87) to have DCBA concentrations above the 95th percentile.ConclusionsThe general U.S. population, including school-age children, is exposed to DEET. However, reliance on DEET as the sole urinary biomarker would likely underestimate the prevalence of exposure. Instead, oxidative metabolites of DEET are the most adequate exposure biomarkers. Differences by season of the year based on demographic variables including race/ethnicity likely reflect different lifestyle uses of DEET-containing products.  相似文献   

7.
In May 2016, a fire occurred in one of the largest landfills in Europe (Seseña, Toledo, Spain), where 70,000–90,000 tons of tires had been illegally accumulated for > 15 years. Because of the proximity of population nuclei and the duration of the episode (> 20 days), we conducted a preliminary human health risk assessment study just after the tire fire. Samples of air and soil were collected in 3 areas surrounding the landfill (El Quiñón, at only 500 m, and Seseña Nuevo and Seseña Viejo, both at 4 km), as well as in background sites. In addition, samples of crops (barley, wheat, cabbage and lettuce) were also obtained from local farmers. The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and a number of trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Tl, and V) were analyzed in all the samples. The concentrations of all the target pollutants, excepting PAHs, were relatively similar at the different sampling zones, irrespective of the distance to the landfill. In turn, a significant increase of PAHs was noted near the tire landfill, with air levels up to 6-times higher than those found at 4 km (134 vs. 19.5–22.7 ng/m3). Similarly, PAH concentrations in lettuce were relatively higher than those typically found in monitoring programs of food safety. Because of the increase of airborne PAHs, cancer risks due to exposure to environmental pollutants for the population living at El Quiñón, near the landfill, were between 3- and 5-times higher than those estimated for the inhabitants of Seseña. After this preliminary study, further investigations, focused only on PAHs, but more extensive in terms of number of samples, should be conducted to assure that PAHs have been progressively degraded through time.  相似文献   

8.
Bisphenol A (BPA) exposure during early life may have endocrine-disrupting effects, but the dietary and sociodemographic predictors of BPA exposure during pregnancy and childhood remain unclear. Our aim was to evaluate the correlations between, and sociodemographic and dietary predictors of, serial urinary BPA concentrations measured during pregnancy and childhood in a Spanish birth cohort study. BPA was measured in two spot urine samples collected from 479 women during the first and third trimester of pregnancy and in one urine sample from their 4-year old children (n = 130). Average dietary intakes were reported in food frequency questionnaires during the first and third pregnancy trimester and at age 4 years. Multivariate mixed models and linear regression models were used to estimate associations between sociodemographic and dietary factors and BPA concentrations. A small, but statistically significant correlation was found between serial maternal BPA concentrations measured during pregnancy (r = 0.17). Pregnant women who were younger, less-educated, smoked, and who were exposed to second-hand tobacco smoke (SHS) had higher BPA concentrations than others. BPA concentrations were also higher in children exposed to SHS. High consumption of canned fish during pregnancy was associated with 21% [GM ratio = 1.21; 95%CI 1.02, 1.44] and 25% [GM ratio = 1.25; 95%CI 1.05, 1.49] higher urinary BPA concentrations in the first and third pregnancy trimester, respectively, compared to the lowest consumption group. This study suggests that canned fish may be a major source of BPA during pregnancy in Spain, a country of high canned fish consumption. Further evaluation of specific BPA exposure sources in the sociodemographic group of younger women who smoke, are exposed to SHS, and have a low educational level is needed. Studies identifying sources of exposure would benefit from repeat BPA measurements and questionnaires specifically focused on dietary and packaging sources.  相似文献   

9.
Tetrabromobisphenol A (TBBPA) and eight bisphenol analogues (BPs) including bisphenol A (BPA) were determined in 388 indoor (including homes and microenvironments) dust samples collected from 12 countries (China, Colombia, Greece, India, Japan, Kuwait, Pakistan, Romania, Saudi Arabia, South Korea, U.S., and Vietnam). The concentrations of TBBPA and sum of eight bisphenols (ƩBPs) in dust samples ranged from < 1 to 3600 and from 13 to 110,000 ng/g, respectively. The highest TBBPA concentrations in house dust were found in samples from Japan (median: 140 ng/g), followed by South Korea (84 ng/g) and China (23 ng/g). The highest ∑ BPs concentrations were found in Greece (median: 3900 ng/g), Japan (2600 ng/g) and the U.S. (2200 ng/g). Significant variations in BPA concentrations were found in dust samples collected from various microenvironments in offices and homes. Concentrations of TBBPA in house dust were significantly correlated with BPA and ∑ BPs. Among the nine target chemicals analyzed, BPA was the predominant compound in dust from all countries. The proportion of TBBPA in sum concentrations of nine phenolic compounds analyzed in this study was the highest in dust samples from China (27%) and the lowest in Greece (0.41%). The median estimated daily intake (EDI) of ∑ BPs through dust ingestion was the highest in Greece (1.6–17 ng/kg bw/day), Japan (1.3–16) and the U.S. (0.89–9.6) for various age groups. Nevertheless, in comparison with the reported BPA exposure doses through diet, dust ingestion accounted for less than 10% of the total exposure doses in China and the U.S. For TBBPA, the EDI for infants and toddlers ranged from 0.01 to 3.4 ng/kg bw/day, and dust ingestion is an important pathway for exposure accounting for 3.8–35% (median) of exposure doses in China.  相似文献   

10.
BackgroundBoron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction.ObjectivesTo evaluate potential effects of boron exposure through drinking water on pregnancy outcomes.MethodsIn a mother-child cohort in northern Argentina (n = 194), 1–3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth.ResultsDrinking water boron ranged 377–10,929 μg/L. The serum boron concentrations during pregnancy ranged 0.73–605 μg/L (median 133 μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80 μg/L were inversely associated with birth length (B  0.69 cm, 95% CI − 1.4; − 0.024, p = 0.043, per 100 μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73–447 μg/L). An increase in serum boron of 100 μg/L in the third trimester corresponded to 0.9 cm shorter and 120 g lighter newborns (p = 0.001 and 0.021, respectively).ConclusionsConsidering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations.  相似文献   

11.
BackgroundBrain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex.ObjectivesWe implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter  2.5 μm (PM2.5) and children's neurodevelopment.MethodsWe assessed 267 full-term urban children's prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners' CPT-II), and memory (general memory [GM] index and its components — verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5 ± 0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined.ResultsMothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤ 12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31–38 weeks with lower IQ, at 20–26 weeks gestation with increased OEs, at 32–36 weeks with slower HRT, and at 22–40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18–26 weeks with reduced VIM, at 12–20 weeks with reduced GM).ConclusionsIncreased PM2.5 exposure in specific prenatal windows may be associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups.  相似文献   

12.
In the frame of the second French Total Diet Study (TDS), the 15 + 1 EU priority polycyclic aromatics hydrocarbons (PAHs) were analyzed in 725 foodstuffs habitually consumed by the French population, using gas chromatography coupled to tandem mass spectrometry, after pressurized liquid extraction and purification on PS-DVB stationary phase. The highest PAH concentrations recovered in foodstuffs corresponded to the following contributors: chrysene (25.7%), benzo[b]fluoranthene (15.0%) and benz[a]anthracene (9.0%) whereas the lowest concentrations were those of dibenz[a,h]anthracene, 5 methylchrysene and dibenzo[a,h]pyrene (below 2.0%). By food groups, the current highest levels of total PAH were detected in mollusks and crustaceans, followed by the different oil based products. To estimate French population's exposure, contamination data were combined with national individual food consumption data. Mean daily exposure to the sum of benzo[a]pyrene, benz[a]anthracene, chrysene and benzo[b]fluoranthene (PAH4) was estimated to be 1.48 ng/kg bw/day in adults and 2.26 ng/kg bw/day in children. The main contributors to PAH exposure for adults are fats, bread and dried bread products followed by crustaceans and mollusks. The margin of exposure (MOE) approach indicates that exposure to PAHs through food is not a major health problem for French consumers.  相似文献   

13.
Prenatal exposure to bisphenol A (BPA) may be associated with adverse health effects in the developing fetus; however, little is known about predictors of BPA exposure during pregnancy. We examined BPA exposure in 491 pregnant women from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort and explored the role of living in the United States on significant dietary predictors of BPA exposure. Women provided urine samples up to two times during pregnancy (n = 866 total samples). We computed the intraclass correlation coefficient (ICC) to evaluate variability in concentrations between collections and used generalized estimating equation (GEE) models to assess predictors of exposure. Geometric mean (GSD) BPA concentrations were 0.9 (2.8) μg/L and 1.0 (2.6) μg/L at the first and second prenatal visits, respectively. We observed greater within- than between-woman variability in urinary BPA concentrations (ICC = 0.22). GEE models suggest that women who lived in the United States their entire life had 38% (CI: − 0.1, 89.3) higher urinary BPA concentrations compared with other immigrant women. Additionally, women who consumed ≥ 3 sodas per day or hamburgers three times a week or more had 58% (CI: 18.0, 112.1) and 20% (CI: − 0.2, 45.2) higher urinary BPA concentrations, respectively, compared with women who consumed no sodas or hamburgers. A higher percentage of women who lived their entire life in the United States reported increased consumption of sodas and hamburgers compared with other immigrant women. Independent of other factors, BPA urinary concentrations were slightly higher when the sample was collected later in the day. As in previous studies, high within-woman variability in urinary BPA concentrations confirms that several samples are needed to properly characterize exposure during pregnancy. Results also suggest that some factors could be modified to minimize exposures during pregnancy in our study participants (e.g., reducing soda and hamburger intake) and that factors associated with acculturation might increase BPA concentrations.  相似文献   

14.
It has been well demonstrated that polycyclic aromatic hydrocarbons (PAHs) can cause reproductive toxicity, and shorter telomere length in sperm may be one of the factors causing male infertility. However, whether exposure to PAHs is associated with sperm telomere length (STL) has never been evaluated. The present study aimed to assess the potential association between PAHs exposure and STL, and to explore potential biomarkers that may predict the effects of low-level exposure to PAHs on human sperm. Questionnaires and biological samples were collected from 666 volunteers participating in the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study in 2014. Semen parameters were measured for 656 participants, while urinary PAH metabolites, STL and sperm apoptosis were successfully measured for 492, 444 and 628 participants, respectively. The linear regression analysis revealed that increased levels of urinary 1-hydroxypyrene (1-OHPyr) and 1-hydroxynapthalene (1-OHNap) were associated with decreased STL (− 0.385; 95% CI, − 0.749, − 0.021 for 1-OHPyr; and − 0.079; 95% CI, − 0.146, − 0.011 for 1-OHNap). The significant negative associations remained after adjusting for potential confounders. However, no significant associations were observed between urinary PAH metabolites and semen quality or sperm apoptosis. We also administrated rats with benzo[a]pyrene (B[a]P; 0, 1, 5, and 10 mg/kg) for 4 weeks and found shorter STL and decreased telomerase expression in germ cells in a dose-dependent manner. In conclusion, environmental exposure to some PAHs may be associated with decreased human STL, and the in vivo animal results also demonstrate the adverse effects of B[a]P on telomere of male germ cells.  相似文献   

15.
Perfluorinated compounds (PFCs), especially perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), are known to occur throughout the environment and in the human population (Houde et al., 2006). The occurrence of PFCs in human umbilical cord blood and human milk, coupled with the potential developmental toxicity of PFCs, suggests the need for determining the exposure sources and magnitudes of PFCs in infants. In this study, 10 PFCs were measured in 24 pooled samples consisting of 1237 individual human milk samples. The samples were collected from 12 provinces of China in 2007. PFOS and PFOA were the predominant PFCs found in all the samples tested. The geometric mean (GM) and median of the concentrations were 46 pg/mL and 49 pg/mL for PFOS, 46 pg/mL and 34.5 pg/mL for PFOA respectively. A large variation in geographical distribution was observed for PFCs in human milk. High concentrations of PFOA (814 pg/ml for the rural samples and 616 pg/ml for the urban samples) were found in human milk from Shanghai. Estimated dietary intakes (EDI) were established and the median, GM and the highest EDI of the total PFCs were 17.2 ng/kg/d, 17.8 ng/kg/d and 129.1 ng/kg/d respectively. The EDI for PFOA (88.4 ng/kg/d) for Shanghai was close to the tolerable daily intake (100 ng/kg/d) proposed by the German Federal Institute for Risk Assessment and the Drinking Water Commission. The results suggest both mothers and infants have a high exposure to PFCs in the Shanghai region. The potential health impact of postnatal exposure through breastfeeding to infants should therefore be comprehensively evaluated.  相似文献   

16.
BackgroundLithium, used for treating bipolar disease, crosses freely the placenta and is classified as teratogenic. It is unclear to what extent environmental lithium exposure may affect fetal growth and development.ObjectivesTo elucidate potential effects of lithium exposure through drinking water during pregnancy on fetal size.MethodsWe developed a prospective population-based mother–child cohort (N = 194) in an area with highly varying drinking water lithium concentrations (5-1600 μg/L) in northern Argentinean Andes. Blood and urinary lithium concentrations (sampled repeatedly during pregnancy) were measured using inductively coupled plasma mass spectrometry. We measured fetal size by ultrasound in second and third trimesters, and weight, length and head circumference at birth. Multivariable models were used to examine associations between lithium exposure (continuous and in tertiles) and fetal size measures.ResultsLithium in maternal blood (median 25; range 1.9–145 μg/L) and urine (1645; 105–4600 μg/L) was inversely associated (apparently linearly) with all fetal measures (body, head and femur) in the second trimester, and with birth length (β − 0.53 cm per 25 μg/L increase in blood lithium, 95%CI − 1.0; − 0.052). An increase of 100 μg/L in blood was associated with 2 cm shorter newborns (about one standard deviation).ConclusionsLithium exposure through drinking water was associated with impaired fetal size and this seemed to be initiated in early gestation. Further studies are warranted to confirm causality and to understand the mechanisms. If confirmed, these findings have public health relevance and emphasize the need for more data on lithium concentrations in drinking water, including bottled water.  相似文献   

17.
The worldwide ban of several formulations of brominated flame retardants has caused an increase in the production of organophosphorus flame retardants (PFRs) to meet the existing fire regulations for a wide range of household products. This biomonitoring study surveys the occurrence of the metabolites from PFRs and related plasticizers (dialkyl and diaryl phosphates; DAPs) in urine from a Norwegian mother–child cohort (48 mothers and 54 children). Concentrations of DAPs were higher in the children than in their mothers (Wilcoxon signed-rank test p = 0.001). Median urinary concentrations of diphenyl phosphate (DPHP) were 1.1 and 0.51 ng/mL in children and mothers, respectively, followed by bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) with medians of 0.23 and 0.12 ng/mL, respectively. Detection frequencies for bis(2-butoxyethyl) phosphate (BBOEP) in urine from children and mothers were 32 and 1%, respectively (median < 0.18 ng/mL), and for di-n-butyl phosphate (DNBP) 15 and 8%, respectively (median < 0.12 ng/mL). The concentrations of DPHP and BDCIPP in urine from children were significantly correlated with those found for their parent compounds in air and dust from the households (Spearman's rank correlations 0.30 < Rs < 0.36; p < 0.05). For mothers, only the urinary concentration of BDCIPP was correlated to its precursor in dust from the households (Rs = 0.40; p < 0.01), which might indicate higher impact of the household environment on children than mothers. A diurnal variability study of the mothers' urinary concentrations of DPHP and BDCIPP showed lower concentrations at time periods when women were likely to be outside the household. In contrast, no relevant associations between organophosphate metabolites in urine and food consumption data obtained through a 24 hour recall were seen. This suggests that the residential environment is a more important exposure pathway to PFRs than the diet.  相似文献   

18.
Brominated flame retardants were determined in adipose tissues from 294 polar bears (Ursus maritimus) sampled in East Greenland in 23 of the 28 years between 1983 and 2010. Significant linear increases were found for sum polybrominated diphenyl ether (ΣPBDE), BDE100, BDE153, and hexabromocyclododecane (HBCD). Average increases of 5.0% per year (range: 2.9–7.6%/year) were found for the subadult polar bears. BDE47 and BDE99 concentrations did not show a significant linear trend over time, but rather a significant non-linear trend peaking between 2000 and 2004. The average ΣPBDE concentrations increased 2.3 fold from 25.0 ng/g lw (95% C.I.: 15.3–34.7 ng/g lw) in 1983–1986 to 58.5 ng/g lw (95% C.I.: 43.6–73.4 ng/g lw) in 2006–2010. Similar but fewer statistically significant trends were found for adult females and adult males likely due to smaller sample size and years. Analyses of δ15N and δ13C stable isotopes in hair revealed no clear linear temporal trends in trophic level or carbon source, respectively, and non-linear trends differed among sex and age groups. These increasing concentrations of organobromine contaminants contribute to complex organohalogen mixture, already causing health effects to the East Greenland polar bears.  相似文献   

19.
Increased use of flame-retardants in office furniture may increase exposure to PBDEs in the office environment. However, partitioning of PBDEs within the office environment is not well understood. Our objectives were to examine relationships between concurrent measures of PBDEs in office air, floor dust, and surface wipes.We collected air, dust, and surface wipe samples from 31 offices in Boston, MA. Correlation and linear regression were used to evaluate associations between variables. Geometric mean (GM) concentrations of individual BDE congeners in air and congener specific octanol–air partition coefficients (Koa) were used to predict GM concentrations in dust and surface wipes and compared to the measured concentrations.GM concentrations of PentaBDEs in office air, dust, and surface wipes were 472 pg/m3, 2411 ng/g, and 77 pg/cm2, respectively. BDE209 was detected in 100% of dust samples (GM = 4202 ng/g), 93% of surface wipes (GM = 125 pg/cm2), and 39% of air samples. PentaBDEs in dust and air were moderately correlated with each other (r = 0.60, p = 0.0003), as well as with PentaBDEs in surface wipes (r = 0.51, p = 0.003 for both dust and air). BDE209 in dust was correlated with BDE209 in surface wipes (r = 0.69, p = 0.007). Building (three categories) and PentaBDEs in dust were independent predictors of PentaBDEs in both air and surface wipes, together explaining 50% (p = 0.0009) and 48% (p = 0.001) of the variation respectively. Predicted and measured concentrations of individual BDE congeners were highly correlated in dust (r = 0.98, p < 0.0001) and surface wipes (r = 0.94, p = 002). BDE209 provided an interesting test of this equilibrium partitioning model as it is a low volatility compound.Associations between PentaBDEs in multiple sampling media suggest that collecting dust or surface wipes may be a convenient method of characterizing exposure in the indoor environment. The volatility of individual congeners, as well as physical characteristics of the indoor environment, influence relationships between PBDEs in air, dust, and surface wipes.  相似文献   

20.
Siloxanes are used widely in a variety of consumer products, including cosmetics, personal care products, medical and electrical devices, cookware, and building materials. Nevertheless, little is known on the occurrence of siloxanes in indoor dust. In this survey, five cyclic (D3–D7) and 11 linear (L4–L14) siloxanes were determined in 310 indoor dust samples collected from 12 countries. Dust samples collected from Greece contained the highest concentrations of total cyclic siloxanes (TCSi), ranging from 118 to 25,100 ng/g (median: 1380), and total linear siloxanes (TLSi), ranging from 129 to 4990 ng/g (median: 772). The median total siloxane (TSi) concentrations in dust samples from 12 countries were in the following decreasing order: Greece (2970 ng/g), Kuwait (2400), South Korea (1810), Japan (1500), the USA (1220), China (1070), Romania (538), Colombia (230), Vietnam (206), Saudi Arabia (132), India (116), and Pakistan (68.3). TLSi concentrations as high as 42,800 ng/g (Kuwait) and TCSi concentrations as high as 25,000 ng/g (Greece) were found in indoor dust samples. Among the 16 siloxanes determined, decamethylcyclopentasiloxane (D5) was found at the highest concentration in dust samples from all countries, except for Japan and South Korea, with a predominance of L11; Kuwait, with L10; and Pakistan and Romania, with L12. The composition profiles of 16 siloxanes in dust samples varied by country. TCSi accounted for a major proportion of TSi concentrations in dust collected from Colombia (90%), India (80%) and Saudi Arabia (70%), whereas TLSi predominated in samples collected from Japan (89%), Kuwait (85%), and South Korea (78%). Based on the measured median TSi concentrations in indoor dust, we estimated human exposure doses through indoor dust ingestion for various age groups. The exposure doses ranged from 0.27 to 11.9 ng/kg-bw/d for toddlers and 0.06 to 2.48 ng/kg-bw/d for adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号