首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg?1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg?1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg?1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg?1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg?1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.  相似文献   

2.
Five arsenic-resistant bacterial strains designated MT1, MT2, MT3, V1 and V2 were isolated from sediments of the Oliveri-Tindari Lagoon (Italy), which comprises six small lakes whose sediments contain low arsenic concentrations. Phylogenetic analysis of the 16S rRNA gene sequences assigned them to the genus Bacillus. Bacillus sp. strain MT3 showed higher tolerance to As(III) and As(V), as indicated by minimum inhibitory concentrations of 14 and 135 mmol?1, respectively. Bacillus sp. strain V1 showed growth inhibition at 14 mmol?1 in the presence of As(III) and at 68 mmol?1 in the presence of As(V), whereas the arsenic resistance of Bacillus sp. strain MT1 was 10 and 27 mmol?1 for As(III) and As(V), respectively. The strains Bacillus spp. MT2 and V2 showed low levels of As(III) and As(V) resistance, as it was unable to grow at concentrations>7 and 14 mmol?1, respectively. The isolated arsenic-resistant Bacillus spp. strains were able to reduce As(V) to As(III), especially Bacillus spp. strain MT3. This study suggests that the isolated bacterial strains play a role in the arsenic biogeochemical cycle of arsenic-poor sediments in the Oliveri-Tindari Lagoon.  相似文献   

3.
Subsurface geochemical behavior of As(V) with Fe(II) was studied under strict anoxic conditions. Abiotic reduction of As(V) (0.1 mM) to As(III) by aqueous Fe(II) and sorbed Fe(II) in pH range 5.0–7.0 and Fe(II)aq concentration (0.6–1.2 mM) was investigated along with the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen (DO). Although the reduction was thermodynamically feasible for homogeneous chemical conditions, practically no As(V) reduction by aqueous Fe(II) was observed. Similarly, no sorbed As(V) reduction was observed under the heterogeneous experimental conditions by sorbed Fe(II) onto synthetic iron oxide (hematite, α-Fe2O3). Experimental results on Fe(II) oxidation by DO in the presence of 0.1 mM As(V) showed a significantly slower Fe(II) oxidation, which might be due to the formation of Fe(II)–As(V) complex in the aqueous phase. The results of this study demonstrate that As(V) is relatively stable in the presence of Fe(II) under subsurface environment and interfere the oxidation of Fe(II).  相似文献   

4.
Sediment cores from four lakes across the Tibetan Plateau were used as natural archives to study the time trends of organochlorine pesticides (OCPs). The total concentrations of dichlorodiphenyltrichloroethane (ΣDDT) and hexachlorocyclohexane isomers (ΣHCH) were in the range of 0.04–1.61 and 0.08–1.88 ng/g based on dry weight (dw), while the input fluxes were in the range of 0.3–236 and 0.7–295 pg/cm2/y in the core sediments, respectively. The input fluxes of ΣDDT and ΣHCH generally peaked in sediment layers corresponding to the 1970s–1990s and peaked in top sediment layers. The ratio of α/γ-HCH decreased in the top layer sediments, implying that the contribution of lindane (pure γ-HCH) has been increasing in recent years. In addition, the ratio of o,p′-DDT/p,p′-DDT increased significantly over the last 15–20 years, suggesting that dicofol (characterized by high ratio of o,p′-DDT/p,p′-DDT about 7.0) has recently become a relatively more important source of DDT compared to technical DDT itself. The time trends of OCPs recorded in lake sediments examined the impact on such remote alpine regions by human activities.  相似文献   

5.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

6.
Sediment samples were analysed for mercury and methylmercury content in different parts of the bottom sediment of Swarz ?dzkie Lake, which were influenced by different external pollution sources. The results of determination with two methods of mineralization using two separate media (HNO3/H2O2 and HF) were compared. The accuracy of the studied methods was analysed using certified reference material IAEA 405 of river sediment. The recovery of mercury was satisfactory and ranged from 97.5 to 98.8%. Methylmercury compounds in the studied sediments were found in limited concentrations. Their concentrations ranged from 0.26 to 58.1 μg kg?1, i.e. 1.0–7.4% of the total mercury content. The depth profile displayed high values of both total and methylmercury content at a depth of 10–20 cm, related to the heavy pollution of the lake in the 1980s. Canonical analysis displayed the relationship of both total mercury and methylmercury concentrations with organic matter and phosphorus content in bottom sediments.  相似文献   

7.
The ability of microbial populations to mediate the anaerobic transformation of four aromatic compounds (aniline, benzoic acid, pyridine, and quinoline) in sediments of the Tsengwen River was examined. Along the river, from a freshwater (0.0° salinity) to an oceanic (37.0° salinity) environment, five sampling stations were chosen to collect the sediment. Sediment slurries were incubated in an anaerobic mineral salts medium that was amended with multiple electron acceptors, including manganese (IV) and ferric (III) oxides, and the concentrations of the aromatic substrates were followed over a 3- to 4-month period. Most sediment samples showed a complete loss of benzoic acid and quinoline (0.12–0.21 mM) within approximately three months. Pyridine was transformed after a lag period of 53 days in the sediment slurries from the freshwater environment which had been amended with both metal oxide (either Fe (OH)3 or MnO2) and inhibitor (either BESA or molybdate). Pyridine was not transformed in other sediment slurries. No significant metabolism of aniline was apparent in any of the sediments.  相似文献   

8.
Our objective was to evaluate distribution and accumulation of trace elements (TEs) in surface sediments along the Hooghly (Ganges) River Estuary, India, and to assess the potential risk with view to human health. The TE concentrations (mg kg?1 dry weight) exhibited a wide range in the following order: Al (31.801 ± 15.943) > Fe (23.337 ± 7584) > Mn (461 ± 147) > S (381 ± 235) > Zn (54 ± 18) > V (43 ± 14) > Cr (39 ± 15) > As (34 ± 15) > Cu (27 ± 11) > Ni (24 ± 9) > Se (17 ± 8) > Co (11 ± 3) > Mo (10 ± 2) > Hg (0.02 ± 0.01). Clay, silt, iron, manganese and sulphur were important for the accumulation of TE in the sediments as confirmed by factor analysis and Pearson correlation. The accumulation and dispersal of TEs were most likely to be governed by both tide-induced processes and anthropogenic inputs from point and non-point sources. Enrichment factor analysis and geoaccumulation index revealed serious contamination of the sediments with Se and As, while comparing the consensus-based sediment quality guidelines (SQGs), adverse biological effects to benthic fauna might be caused by As, Cu, Ni and Cr. This investigation may serve as a model study and recommends continuous monitoring of As, Se, Cu, Ni and Cr to ascertain that SQGs with respect to acceptable levels of TEs to safeguard geochemical health and ecology in the vicinity of this estuary.  相似文献   

9.
The extensive extraction of arsenic (As)-contaminated groundwaters for drinking, household and agricultural purposes represents a serious health concern in many districts of Bangladesh. This laboratory-based incubation study investigated the sources and mechanisms of As mobilization in these groundwaters. Several incubation studies were carried out using sediments collected from the Bangladesh aquifer that were supplemented, or not, with different nutrients, followed by an analysis of the sediment suspensions for pH, ORP (oxidation-reduction potential), EC (electrical conductivity) and As and Fe(ΙΙ) concentrations. In the substrate-amended sediment suspensions incubated under anaerobic environment, there was a mobilization of As (maximum: 50–67 μg/l) and Fe(ΙΙ) (maximum: 182 μg/l), while the ORP value decreased immediately and drastically (as much as −468 mV to −560 mV) within 5–6 days. In the sediment suspensions incubated under control and aerobic conditions, no significant As mobilization occurred. The simultaneous mobilization of As and Fe(ΙΙ) from sediments is a strong indication that their mobilization resulted from the reduction of Fe oxyhydroxide by the enhanced activity of indigenous bacteria present in the sediments; this phenomenon also provides insights on the mobilization mechanism of As in groundwater. The concentrations of As in the sediments used in the incubation studies were strongly linked to the gradients of redox potential development that was stimulated by the quantity of organic nutrient (glucose) used. The penetration of surface-derived organic matter into the shallow aquifer may stimulate the activity of microbial communities, thereby leading to a reduction of iron oxyhydroxide and As release.  相似文献   

10.
Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.  相似文献   

11.
There is actually a need for efficient methods to clean waters and wastewaters from pollutants such as the bisphenol A endocrine disrupter. Advanced oxidation processes currently use persulfate or peroxymonosulfate to generate sulfate radicals. There are, however, few reports on the use of sulfite to generate sulfate radicals, instead of persulfate or peroxymonosulfate, except for dyes. Here we studied the degradation of the bisphenol A using iron(III) as catalyst and sulfite as precursor of oxysulfur radicals, at initial pH of 6, under UV irradiation at 395 nm. The occurrence of radicals was checked by quenching with tert-butyl alcohol and ethanol. Bisphenol A degradation products were analyzed by liquid chromatography coupled with mass spectrometry (LC–MS). Results reveal that iron(III) or iron(II) have a similar oxidation efficiency. Quenching experiments show that the oxidation rate of bisphenol A is 47.7 % for SO 4 ·? , 37.3 % for SO 5 ·? and 15 % for HO·. Bisphenol A degradation products include catechol and quinone derivatives. Overall, our findings show that the photo-iron(III)–sulfite system is efficient for the oxidation of bisphenol A at circumneutral pH.  相似文献   

12.
The high consumption of crabs (Ucides cordatus) stimulated interest in the present study on the northern coast of Brazil, which encompasses a preserved area of mangrove forest. The objective was to describe and quantify the transfer of metals from the muddy sediments to the leaves of the Rhizophora mangle, and thence the crabs and humans. The samples were collected along two transects, while samples of hair were obtained from local habitants. The pH, interstitial salinity, Eh (mV) were measured, the granulometry and mineralogical and multi-element chemical analyses were run, and the organic material determined. The sediments are silty-clayey, composed of quartz, kaolinite, iron oxides, and illite, as well as smaller portions of smectite, pyrite, halite, and high levels of SiO2 (56.5 %), Al2O3 (18.5 %), and Fe2O3 (7 %). The elements Zn, Sr, As, and Zr are concentrated in the leaves, while the bioaccumulation of Zn, Se, Sr, and As was recorded in the crabs, of which, Se is the most concentrated in the tissue of the muscles and the hepatopancreas. The concentrations of nutrient and toxic elements were similar in all age groups (hair samples), with only Hg presenting an increasing concentration between infants and adults. The highest rates of transfer were recorded for the elements Zn and Se in the crabs and Hg in leaves and hair. The accumulation of metals in the leaves and crabs reflects the chemical composition of the sediments and low rates of sediment-vegetation-crab transfer, with the exception of Hg, which accumulated in the hair.  相似文献   

13.
The present study evaluated the beneficial effect of acetyl-L-carnitine (ALC) on subacute chlorpyrifos (CPF)-induced alterations in serum lipid profiles and some biomarkers of oxidative stress in Wistar rats. Twenty-eight adult male rats divided into four groups of seven animals each (group I–IV) were used: I (S/oil) received soya oil (2 ml kg?1), II (ALC) received ALC (300 mg kg?1); III (CPF) received CPF (8.5 mg kg?1 ~ 1/10th LD50); IV (ALC+CPF) was pretreated with ALC (300 mg kg?1) and then exposed to CPF (8.5 mg kg?1), 30 min later. The treatment was orally for 28 days duration. Sera obtained from blood samples were evaluated for the levels of triglyceride (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-c), malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and catalase (CAT). The levels of low density lipoprotein-cholesterol (LDL-c), very low density lipoprotein-cholesterol (VLDL-c), and atherogenic index (AI) were calculated. The result showed that elevated levels of TG, TC, LDL-c, VLDL-c, AI, and MDA, and the decreased levels of HDL-c, CAT, and SOD induced by CPF were modulated by ALC. It was concluded that ALC ameliorated the alterations in serum lipid and oxidative stress induced by CPF exposure in the rats, partly through its antioxidant properties.  相似文献   

14.
This study presents metal levels in the sediments of the Bakar Bay, with its main goal to evaluate recent anthropogenic influence, as well as over previous decades. Sediment profiles at 7 sampling points were taken. Chemical contents in bulk sediment were obtained using ICP, ICP-MS, and AAS methodologies, and 20 most significant elements were presented. Concentrations of selected elements were evaluated by factor statistical analyses to identify their source. Also, metal enrichment factor and geoaccumulation index were calculated, and spatial distribution maps for three sediment layers were constructed. Measured metal concentrations in sediment were compared with concentrations in other sediments from the Adriatic Sea. In addition, a set of sediment quality guidelines were also applied in order to predict the probability of adverse biological effects on the benthic community: This was found not to be very serious. Factor analysis clearly demonstrates the segregation between metals of natural origin resulted from soil and bedrock weathering (Li, Al, Cr, Sc), and with two anthropogenic sources originating from the city of Bakar and bulk cargo terminal (Hg, Pb, Zn, Ag, Sn, and Fe). Mercury (max 0.65 μg g?1) is found to be the heaviest contaminant, followed by lead (max 71.5 μg g?1), copper (89.3 μg g?1), and zinc (156 μg g?1). However, this study shows that Bakar Bay is considerably less polluted with toxic metals than it was believed.  相似文献   

15.
A soil washing process was applied to remediate arsenic (As)-contaminated stream sediments around an abandoned mine in Goro, Korea. Laboratory scale soil washing experiments for As-contaminated stream sediments were performed under various washing conditions in order to maximize As removal efficiency. Stream sediments were taken from two sites (S1 and S5) along the main stream connected to an abandoned mine. Stream sediments at the two sites were divided into two groups (≥0.35 and <0.35 mm in diameter), giving four types of sediments, which were thereupon used for soil washing experiments. The results of soil washing experiments involving various pH conditions suggested that As removal efficiency is very high in both strongly acidic and basic solutions (pH 1 and 13), regardless of sediment type. Removal efficiencies for fine sediments from S1 and S5 were >95% after 1 h of washing with 0.2 M citric acid (C6H8O7). When using 0.2 M citric acid mixed with 0.1 M potassium phosphate (KH2PO4), the As removal efficiency increased to 100%. When recycled washing solution was applied, As removal efficiency was maintained at a level greater than 70%, even after eight recycling events. This suggests that the recycling of washing solution could be successfully applied as a means of decreasing the cost of the washing process. Results from the experiments suggest that soil washing is a potentially useful process for the remediation of As-contaminated stream sediments around abandoned mines.  相似文献   

16.
Laboratory and field filtration experiments were conducted to study the effectiveness of As(V) removal for five types of adsorbent media. The media included activated alumina (AA), modified activated alumina (MAA), granular ferric hydroxide (GFH), granular ferric oxide (GFO), and granular titanium dioxide (TiO2). In laboratory batch and column experiments, the synthetic challenge water was used to evaluate the effectiveness for five adsorbents. The results of the batch experiments showed that the As(V) adsorption decreased as follows at pH 6.5: TiO2 > GFO > GFH > MAA > AA. At pH 8.5, however, As(V) removal decreased in the following order: GFO = TiO2 > GFH > MAA > AA. In column experiments, at pH 6.5, the adsorbed As(V) for adsorbents followed the order: TiO2 > GFO > GFH, whereas at pH 8.5 the order became: GFO = TiO2 > GFH when the challenge water containing 50 μg/L of As(V) was used. Field filtration experiments were carried out in parallel at a wellhead in New Jersey. Before the effluent arsenic concentration increased to 10 μg/L, approximately 58,000 and 41,500 bed volumes of groundwater containing an average of 47 μg/L of As(V) were treated by the filter system packed with GFO and TiO2, respectively. The As(V) adsorption decreased in the following sequence: GFO > TiO2 > GFH > MAA > AA. Filtration results demonstrated that GFO and TiO2 adsorbents could be used as media in small community filtration systems for As(V) removal.  相似文献   

17.
Bio-diffusion mixing rates (Db) were estimated from depth profiles of excess 210Pb and 137Cs in three sediment cores collected from Mumbai Harbour Bay (MHB) using a steady state vertical advection - diffusion model. The mean of 210Pb and 137Cs derived Db values along the studied area were obtained to be about 23 and 36 cm2y?1 respectively. These derived values were within the range of literature values reported for other equivalent environment internationally. The relatively higher Db values for 137Cs profiles demonstrated that particles have diffused more intensely within the surface layer of sediments over 1 year. Conversely, low Db values for 210Pb indicate slow mixing rates in the sediment profile which might be resulted from low 210Pb flux and diffusion of 222Rn to the seafloor. The significant differences between 210Pb and 137Cs derived Db values among cores indicate that there appeared to be as regional differences in sediment properties and local variability in the intensity of seafloor mixing. Furthermore, Db values also depend on differences in characteristic time and depth scales of radionuclides in cores, benthic fauna abundances, organic carbon flux to the sediments and primary production in overlying surface waters. Comparison of 210Pb derived Db values with those calculated from 137Cs distributions reveals better agreement for core 2 than core 1 and 3. The agreement may be fortuitous because 137Cs appears significantly deeper than 210Pb in all cores. It was also observed that Db values increases as sediment accumulation rate increases for both radionuclide.  相似文献   

18.
Food contamination by Cd and Pb is of increasing concern because contaminated composts and sewage sludges are used as soil fertilizers. Indeed, Cd and Pb from sewage sludge and compost can be transferred to plants and, in turn, to food. Predicting the quantity of metals transferred to plants is difficult and actual models are unable to give accurate concentrations. Therefore, new techniques are needed. For instance, diffusive gradient in thin-film (DGT) is commonly used to measure metal bioavailability in waters, sediments and soils, but DGT has not been well studied for metal uptake in plants. Moreover, actual models for soil–plant transfer are too complex and require many soil parameters. Here, we simplified the modelization of metal uptake by plants by considering only DGT fluxes and roots surfaces. We grew durum wheat in a greenhouse on sandy soils amended with urban compost or sewage sludge. Results show that Cd uptake was slightly underestimated when whole roots were considered as an absorbing surface. For Pb, the best estimation was found by using root tip surface. Overall, our model ranks correctly the samples but underestimates Pb uptake by 15 % and Cd uptake by 45 %. It is nonetheless a simpler way of modelling by using only DGT fluxes and root system morphology.  相似文献   

19.
Antarctic fauna are highly adapted to the frigid waters of the Southern Ocean. This study describes the in vitro temperature sensitivity of oxygen consumption rates measured in liver mitochondria from the pelagic notothenioid Pleuragramma antarcticum between 5 and 35 °C. Oxygen fluxes were measured after the addition of millimolar levels of pyruvate, malate, succinate and glutamate (state II, LEAK) and saturating levels of ADP [state III, oxidative phosphorylation (OXPHOS)]. State III respiration significantly decreased above 18.7 °C. A comparison of the oxidative capacities among P. antarcticum and other notothenioids showed significant differences in state III respiration, where benthic species exhibited about 50 % lower rates than P. antarcticum. In addition, state III respiration rates normalized per milligram of mitochondrial protein of P. antarcticum were up to eight times higher than state III rates reported in the literature for other notothenioids. The comparatively high respiration rates measured in this study may be explained by our approach, which engaged both complexes I and II under conditions of oxidative phosphorylation. State III rates of independently activated complexes I and II were found to range from 42 to 100 % of rates obtained when both complexes were activated simultaneously in the same species. The remarkable tolerance of P. antarcticum OXPHOS toward warmer temperatures was unexpected for an Antarctic stenotherm and may indicate that thermal sensitivity of their mitochondria is not the driving force behind their stenothermy.  相似文献   

20.
Soils from old Au-mine tailings (La Petite Faye, France) were investigated in relation to the natural vegetation cover to evaluate the risk of metals and metalloids (Pb, As, Sb) mobilizing and their potential transfer to native plants (Graminea, Betula pendula, Pteridium aquilinum, Equisetum telmateia). The soils are classified as Technosols with high contamination levels of As, Pb, and Sb. The single selective extractions tested to evaluate available fraction (CaCl2, acetic acid, A-Rhizo, and DTPA) showed low labile fractions (<5 % of bulk soil contents), but still significant levels were observed (up to 342.6 and 391.9 mg/kg for As and Pb, respectively) due to the high contamination levels of soils. Even at high soil contaminations (considered as phytotoxic levels for plants), translocation factors for native plants studied are very low resulting in low concentrations of As, Sb, and Pb in their aerial part tissues. This study demonstrates the important role of (1) native plant cover in terms of “stabilization” of these contaminants, and (2) the poor effectiveness of extraction procedures used for this type of soil assemblages, i.e., rich in specific mineral phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号