共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollutant dispersion in wetland systems: Mathematical modelling and numerical simulation 总被引:1,自引:0,他引:1
In this paper we present and justify an original use of a diffusive-advective partial differential equation model, its discretization procedures and resulting numerical simulations for the dispersal of pollutants in an air–water system, with distinct behaviours in water and in air. The authors believe that the relevance of the developed work lies in its potential use in practical environmental assessment processes for the definition of both preventive and clean-up strategies. 相似文献
2.
Large-eddy simulation of turbulent flow and dispersion over a complex urban street canyon 总被引:1,自引:0,他引:1
Kiyoung Moon Jeong-Min Hwang Byung-Gu Kim Changhoon Lee Jung-il Choi 《Environmental Fluid Mechanics》2014,14(6):1381-1403
Turbulent flow and dispersion characteristics over a complex urban street canyon are investigated by large-eddy simulation using a modified version of the Fire Dynamics Simulator. Two kinds of subgrid scale (SGS) models, the constant coefficient Smagorinsky model and the Vreman model, are assessed. Turbulent statistics, particularly turbulent stresses and wake patterns, are compared between the two SGS models for three different wind directions. We found that while the role of the SGS model is small on average, the local or instantaneous contribution to total stress near the surface or edge of the buildings is not negligible. By yielding a smaller eddy viscosity near solid surfaces, the Vreman model appears to be more appropriate for the simulation of a flow in a complex urban street canyon. Depending on wind direction, wind fields, turbulence statistics, and dispersion patterns show very different characteristics. Particularly, tall buildings near the street canyon predominantly generate turbulence, leading to homogenization of the mean flow inside the street canyon. Furthermore, the release position of pollutants sensitively determines subsequent dispersion characteristics. 相似文献
3.
4.
Benoit Cushman-Roisin 《Environmental Fluid Mechanics》2008,8(5-6):543-549
Turbulent dispersion proceeds not only much faster but also in a qualitatively different manner than molecular diffusion. Yet, the majority of hydraulic, oceanic and atmospheric models rely on the concept of an eddy diffusivity. It is shown here that an alternative model can be developed to exhibit observed behavior. The new term in the diffusion equation, which is non-local, may be interpreted in terms of the probability density function (pdf) of the turbulent velocity. Different assumptions about this distribution lead to a family of models, one of which is the model proposed here and another, the classical Fickian model of diffusion. A connection is also made with models using fractional calculus. 相似文献
5.
With a growing awareness of water pollution problems, in recent years there has been a considerable increased effort in developing and applying numerical models to predict accurately the contaminant distributions, particularly in free surface flows. This numerical study presents a predictive hydrodynamic model in order to explore the dispersion phenomenon of a pollutant injected from time-dependent sources in a turbulent free surface flow. More precisely, we study the impact of pulsation on the dispersion of an injected material. The air/water interface was modeled with the volume of fluid method and sharpness of the free surface was assured by means of Geo-Reconstruct scheme. The numerical results showed that the pulsation played a dominant role at the early stage of the pollutant transport. It was also observed that the pulsation affected the distribution of the injected material especially near the front and that a major swirling action was developed compared to the constant-rate-injection case. 相似文献
6.
Synthetic pheromones and other behavioral chemicals are used by land managers to prevent insect-caused tree mortality or crop failure in forest and agricultural systems. Currently, no method exists to continuously measure pheromone concentration or movement in real-time. To improve our understanding of pheromone fate and transport under different forest canopies, results from a set of surrogate pheromone (sulfur hexafluoride tracer) experimental trials were used to evaluate a simple, instantaneous, three-dimensional Lagrangian dispersion model. The model was designed to predict both instantaneous and time-averaged pheromone concentrations. Overall, the results from the model show simulated time-averaged arc maximum concentrations within a factor of two of the observed data. The model correctly matched the sharp peaks and narrow widths of the meandering plumes observed in the instantaneous data, however the magnitude of the instantaneous peaks was often under-estimated. This model and evaluation provide the basis for a tool that can be used to guide deployment of synthetic pheromones or other semiochemicals for monitoring, mass trapping, or disruption of mating or aggregation. 相似文献
7.
Environmental Fluid Mechanics - Discharged jet from desalination plants has harmful effects on the surrounding environment so that it is essential to investigate its behavior in detail. The aim of... 相似文献
8.
9.
Carlo Gualtieri 《Environmental Fluid Mechanics》2010,10(1-2):137-156
Although transverse mixing is a significant process in river engineering when dealing with the discharge of pollutants from point sources or the mixing of tributary inflows, no theoretical basis exists for the prediction of its rate, which is indeed based upon the results of experimental works carried on in laboratory channels or in streams and rivers. The paper presents the preliminary results of a numerical study undertaken to simulate the transverse mixing of a steady-state point source of a tracer in a two-dimensional rectangular geometry, which is expected to reproduce a shallow flow. This geometry is that of Lau and Krishnappan (J Hydraul Div 13(HY10):1173–1189, 1977), who collected turbulent mixing data for a shallow flow. In the numerical study an approach based on the Reynolds Averaged Navier–Stokes (RANS) equations was applied, where the closure problem was solved by using turbulent viscosity concept. Particularly, the classical two-equations k–? model was used. Two methods were applied to the model results to evaluate the turbulent transverse mixing coefficient. The effect on transverse mixing of a grid located upstream the tracer source was also studied. Numerical results were generally higher than the experimental data. This overestimation could be explained considering the hypothesis of isotropic turbulence underlying the k–? model, which can lead to large turbulent viscosities and rate of mixing. However, RANS-based results may still be considered acceptable also providing the large uncertainties associated with literature predictive equations. 相似文献
10.
Junichi Okuyama Takashi Kitagawa Kei Zenimoto Shingo Kimura Nobuaki Arai Yoshikazu Sasai Hideharu Sasaki 《Marine Biology》2011,158(9):2055-2063
We used Lagrangian numerical simulations to examine the trans-Pacific dispersal processes of loggerhead turtle hatchlings. Ten thousand simulated particles were released from each of the three nesting regions in Japan and tracked for 5 years. Results showed many particles moving eastward, drifting in the Kuroshio Current followed by the Kuroshio Extension Current. However, no particles reached Baja California, a known feeding area, through passive processes, indicating that trans-Pacific transportation requires active swimming by turtles. The duration of the trans-Pacific dispersal was estimated to be at least 1.6–3.4 years, with some turtles drifting in the Kuroshio Countercurrent and remaining in the western Pacific even after 5 years. This indicates that as revealed by previous genetic studies, not all loggerheads always disperse along a trans-Pacific route. The findings showed that survival and expected growth rates varied widely according to ambient temperatures during drifting, which in turn depended on nesting location. 相似文献
11.
We review the fundamentals of a new numerical modeling technique called Renormalized Numerical Simulation (RNS). The goal
of RNS is to model the drag force produced by high Reynolds-number turbulent flow over objects that display scale-invariant
properties, objects such as tree-like fractals. The hallmark of RNS in this application is that the drag of the unresolved
tree branches is modeled using drag coefficients measured from the resolved branches and unresolved branches (as modeled in
previous iterations of the procedure). In the present paper, RNS is used to study the effects of branch orientation on the
drag force generated by highly idealized trees in which trunk and branches have square cross-section, and the branches all
lie in a plane perpendicular to the incoming flow. Then, the procedure is generalized to the more general case of non-planar
branch arrangements. Results illustrate that RNS may enable numerical modeling of environmental flow processes associated
with fractal geometries using affordable computational resolution. 相似文献
12.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES. 相似文献
13.
The aim of this paper is to provide an investigation, using large eddy simulation, into plume dispersion behind an aircraft
in co-flowing take-off conditions. Validation studies of the computational model were presented by Aloysius and Wrobel (Environ
Model Softw 24:929–937, 2009) and a study of the flow and dispersion properties of a double-engine aircraft jet was presented
by Aloysius et al. (EEC/SEE/2007/001, EUROCONTROL Experimental Centre, ), in which only the engine was modelled. In this paper, the complete geometry of a Boeing 737 is modelled and investigated.
The current work represents a contribution towards a better understanding of the source dynamics behind an airplane jet engine
during the take-off and landing phases. The information provided from these simulations will be useful for future improvements
of existing dispersion models. 相似文献
14.
不同耕作方式和雨强对紫色土坡耕地降雨有效性的影响 总被引:6,自引:0,他引:6
农业水资源短缺越来越受到世界各国的关注,对我国的威胁尤为严重.为了揭示紫色土地区坡耕地常用农耕措施在不同雨强条件下对雨水土壤蓄积率的影响规律,为紫色土坡耕地抗旱耕作技术创制提供理论依据,文章采用两因素、三水平、三重复随机区组试验,利用人工降雨装置和模拟径流小区,在栽培玉米(Zea mays L.)条件下,研究了不同耕作方式和雨强对紫色土坡耕地降雨有效性的影响.研究结果表明:在耕作方式相同时,雨强越大,地表径流量越大,地下径流量减少,总径流量增加,不利于土壤保蓄雨水和含水量的提高.在相同雨强条件下,平作的地表径流量最大,雨水土壤蓄积率最低.横坡垄作在中雨强条件下控制地表径流和侵蚀的效果非常明显,能够显著提高雨水土壤蓄积率,但在大雨强和小雨强条件下,提高雨水土壤蓄积率的效果减弱.横坡垄作等保护性耕作措施可以增加土壤对雨水的有效库容,提高土壤抗旱能力,是适用于该区域的抗旱耕作技术. 相似文献
15.
Remote sensing and numerical models are often used to monitor the suspended sediment concentration (SSC) in coastal waters; however, the derived SSC varies between the two methods in both space and time. In this study, a method was proposed to assess the spatiotemporal differences in SSC derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images and numerical simulation for coastal waters, using the Bohai Sea in China as an example. An empirical model for SSC retrieval from remote sensed images was initially established. A comparison of the temporal synchronicity over a single day period was performed between the observed data and the numerically simulated results. The range in the SSC at different observation sites was significantly different. Both the SSC values and their daily variation ranges were larger near the estuary of the Yellow River compared with the open area due to the concurrence of tidal flow and the introduction of fresh river water with high turbidity near the estuary. The areas that exhibited spatial differences were defined according to their differences in remotely sensed and numerically simulated SSC distribution patterns. Finally, the reasons for these spatiotemporal differences were discussed. The results provided understanding into the spatiotemporal differences that were introduced when multi-source data were used, thus improving the accuracy of the results when monitoring coastal environments for the management of coastal conservation. 相似文献
16.
Younis Bassam A. Jooß Yannik Spring Sebastian Weigand Bernhard 《Environmental Fluid Mechanics》2019,19(2):495-512
Environmental Fluid Mechanics - The paper reports on the development of an explicit, algebraic model for the turbulent scalar fluxes which properly reflects the dependence of these fluxes on the... 相似文献
17.
Environmental Fluid Mechanics - We present large-eddy simulations (LES) of riverine flow in a study reach in the Sacramento River, California. The riverbed bathymetry was surveyed in... 相似文献
18.
Environmental Fluid Mechanics - This paper aims at addressing issues related to the misrepresentation of the turbulent stratified flow for sand wave simulation using the continuum coupled flow and... 相似文献
19.
Sebastian Schimmelpfennig Georgiy Kirillin Christof Engelhardt Gunnar Nützmann 《Environmental Fluid Mechanics》2012,12(4):321-339
Prediction of mixing intensity of water masses in riverine Lake Tegel (Berlin, Germany) can be used to trace the fate of pollutants that enter the lake through several inflows. Because the contributions of each inflow have not yet been quantified and because the lake features complex bathymetry and numerous islands, a hydrodynamic circulation model with high spatial resolution and dynamic wind forcing is useful. We applied the two-dimensional version of the Princeton Ocean Model to separate the influences of wind and river discharge on the currents and mass transport in Lake Tegel. For model validation, we compared the simulation results with 1?year of electrical conductivity data, which was used as a conservative tracer to distinguish between water from the River Havel and water supplied by a smaller second inflow. Calculation of currents alone is insufficient to investigate water exchanges between rivers and lakes, especially when several islands create multiple pathways for river intrusion. Therefore, mass transport simulations are applied. Our calculations based on archetypical scenarios indicate that the proportion of (polluted) water from the River Havel in the main basin of Lake Tegel fluctuates with river discharge and wind, which either amplify or neutralize each other. 相似文献
20.
酸雨对外来植物入侵的影响 总被引:2,自引:0,他引:2
酸雨和外来种入侵都是全球关注的问题。结合外来入侵植物的生态适应特性以及酸雨的危害特征,系统分析了酸雨对外来植物入侵产生的影响。酸雨对外来植物入侵的影响是复杂多样的。酸雨导致群落冠层稀疏,群落透光率增加,加之氮沉降后土壤、水体氮素的增加,有利于生长力强的外来喜阳植物入侵;酸雨加速土壤酸化,促使基本离子淋失以及A1毒等危害植物的生长发育,植物的内源激素以及化感作用发生改变,适应力和耐受力强的外来植物在与本地植物竞争中处于相对优势而成为入侵种;酸雨以及外来植物入侵改变了土壤微生物群落结构,影响本地植物的生长而促使外来植物的入侵。 相似文献