首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A simulation tool has been developed to model the wind fields, turbulence fields, and the dispersion of Chemical, Biological, Radiological and Nuclear (CBRN) substances in urban areas on the building to city blocks scale. A Computational Fluid Dynamics (CFD) approach has been taken that naturally accounts for critical flow and dispersion processes in urban areas, such as channeling, lofting, vertical mixing and turbulence, by solving the steady-state, Reynolds-Averaged Navier–Stokes (RANS) equations. Rapid generation of high quality cityscape volume meshes is attained by a unique voxel-based model generator that directly interfaces with common Geographic Information Systems (GIS) file formats. The flow and turbulence fields are obtained by solving the steady-state RANS equations using a collocated, pressure-based approach formulated for unstructured and polyhedral mesh elements. Turbulence modeling is based upon the Renormalization Group variant of the k–ε model (k–ε RNG). Neutrally buoyant simulations are made by prescribing velocity boundary condition profiles found by a power–law relationship, while turbulence quantities boundary conditions are defined by a prescribed mixing length in conjunction with the assumption of turbulence equilibrium. Dispersion fields are computed by solving an unsteady transport equation of a dilute gas, formulated in a Eulerian framework, using the velocity and turbulence fields found from the steady-state RANS solution. In this paper the model is explained and detailed comparisons of predicted to experimentally obtained velocity, turbulence and dispersion fields are made to neutrally stable wind tunnel and hydraulic flume experiments.  相似文献   

2.
Particle-driven gravity currents frequently occur in nature, for instance as turbidity currents in reservoirs. They are produced by the buoyant forces between fluids of different density and can introduce sediments and pollutants into water bodies. In this study, the propagation dynamics of gravity currents is investigated using the FLOW-3D computational fluid dynamics code. The performance of the numerical model using two different turbulence closure schemes namely the renormalization group (RNG) ${k-\epsilon}$ scheme in a Reynold-averaged Navier-Stokes framework (RANS) and the large-eddy simulation (LES) technique using the Smagorinsky scheme, were compared with laboratory experiments. The numerical simulations focus on two different types of density flows from laboratory experiments namely: Intrusive Gravity Currents (IGC) and Particle-Driven Gravity Currents (PDGC). The simulated evolution profiles and propagation speeds are compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting the temporal and spatial evolution of intrusive gravity currents. In particular, the simulated propagation speeds are in excellent agreement with experimental results. The simulation results do not show any considerable discrepancies between RNG ${k-\epsilon}$ and LES closure schemes. The FLOW-3D model coupled with a particle dynamics algorithm successfully captured the decreasing propagation speeds of PDGC due to settling of sediment particles. The simulation results show that the ratio of transported to initial concentration C o /C i by the gravity current varies as a function of the particle diameter d s . We classify the transport pattern by PDGC into three regimes: (1) a suspended regime (d s is less than about 16 μm) where the effect of particle deposition rate on the propagation dynamics of gravity currents is negligible i.e. such flows behave like homogeneous fluids (IGC); (2) a mixed regime (16 μm < d s <40 μm) where deposition rates significantly change the flow dynamics; and (3) a deposition regime (d s ?> 40 μm) where the PDGC rapidly loses its forward momentum due to fast deposition. The present work highlights the potential of the RANS simulation technique using the RNG ${k-\epsilon}$ turbulence closure scheme for field scale investigation of particle-driven gravity currents.  相似文献   

3.
The kinematics of hydrodynamic turbulent flows developed in vertical slot fishways (VSF) was studied in detail in flow patterns not yet published to date for the purposes of modifying existing devices and to allow for the passage of all fishes, particularly the smaller species. A transparent device based on the typical prototype dimensions of VSF in France was constructed for the experiment. The velocity measurements were carried out by Particle Image Velocimetry (PIV). These measurements were used to determine the various kinematics parameters characterizing the flow. From the dimensions and slope of the fishway, two flow topologies highlighting the swirling pattern were proposed. The method of Proper Orthogonal Decomposition (POD) was used to undertake unsteady and energetic analyses to characterize the main phases of flow evolution that fish passing through the passage may encounter.  相似文献   

4.
Sediment-laden turbulent flows are commonly encountered in natural and engineered environments. It is well known that turbulence generates fluctuations to the particle motion, resulting in modulation of the particle settling velocity. A novel stochastic particle tracking model is developed to predict the particle settling out and deposition from a sediment-laden jet. Particle velocity fluctuations in the jet flow are modelled from a Lagrangian velocity autocorrelation function that incorporates the physical mechanism leading to a reduction of settling velocity. The model is first applied to study the settling velocity modulation in a homogeneous turbulence field. Consistent with basic experiments using grid-generated turbulence and computational fluid dynamics (CFD) calculations, the model predicts that the apparent settling velocity can be reduced by as much as 30 % of the stillwater settling velocity. Using analytical solution for the jet mean flow and semi-empirical RMS turbulent velocity fluctuation and dissipation rate profiles derived from CFD predictions, model predictions of the sediment deposition and cross-sectional concentration profiles of horizontal sediment-laden jets are in excellent agreement with data. Unlike CFD calculations of sediment fall out and deposition from a jet flow, the present method does not require any a priori adjustment of particle settling velocity.  相似文献   

5.
For the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM–SWEs model. Fifteen experiments were conducted with their scouring flow durations vary from 46 to 546 h. The comparison shows that the 2D SGUM–SWEs model gives good representation to the experimental results with the practical advantage.  相似文献   

6.
The combination of current velocity and water depth influences stream flow conditions, and fish activities prefer particular flow conditions. This study develops a novel optimal flow classification method for identifying types of stream flow based on the current velocity and the water depth using a genetic algorithm. It is applied to the Datuan stream in northern Taiwan. Fish were sampled and their habitat investigated at the study site during the spring, summer, fall and winter of 2008-2009. The current velocity, water depth and maps of the presence probability of fish were estimated by ordinary and indicator kriging. The optimal classification results were compared with the classification results obtained using the Froude number and empirical methods. The flow classification results demonstrate that the proposed optimal flow classification method that considers depth-velocity and optimally identified criteria for classifying flow types, yields a current velocity and water depth of 0.32 (m/s) and 0.29 (m), respectively, and classifies the flow conditions in the study area as pool, run, riffle and slack. The variography results of the current velocity and the water depth data reveal that seasonal flows are not spatially stationary among seasons in the study area. Kriging methods and a two-dimensional hydrodynamic model (River 2D) with empirical and optimal flow classification methods are more effective than the Froude number method in classifying flow conditions in the study area. The flow condition classifications and probability maps were generated by River 2D, ordinary kriging and indicator kriging, to quantify the flow conditions preferred by Sicyopterus japonicus in the study area. However, the proposed optimal classification method with kriging and River 2D is an effective alternative method for mapping flow conditions and determining the relationship between flow and the presence probability of target fish in support of stream restoration.  相似文献   

7.
The number and distribution of pollutant concentration in a trapezoidal open channel flow with a side discharge is calculated and effects of the bank gradient are investigated in this paper. A sigma-coordinate water quality numerical model is used to simulate the process of both water and pollutant transportation in the trapezoidal channel open flow. The diffusion coefficient used in the prediction is determined by two methods including constant coefficient and the depth-averaged k-epsilon turbulence closure model. The change of the concentration with the bank gradient is acquired based on the simulation of cases with different bank gradients. An analytical formula is derived by using the mirror image method and related diffusion theories, ignoring the discharge momentum and the influence of the opposite bank. The formula can predict the number and distribution of pollutant concentration with some acceptable errors. The results demonstrate that the bank gradient has great influence on the concentration distribution which will decrease with the increase of the bank gradient approximately following a hyperbolic law.  相似文献   

8.
Xu  Ze-Xing  Ye  Chen  Zhang  Yan-Yang  Wang  Xie-Kang  Yan  Xu-Feng 《Environmental Fluid Mechanics》2020,20(4):707-738

This paper investigates the influence of near-bank vegetation patches on the bed morphological adjustment in open channel flow systems. The 2D depth-averaged hydro-morphological model is adopted for this investigation, which is first validated by laboratory experimental data measured in an open channel with a single near-bank vegetation patch. The validated model is then applied for extensive numerical simulations, with the aim of conducting a systematic analysis of the influence of different geometric controlling parameters on the bed morphological evolution. The controlling parameters taken into account for numerical analysis include the angle of repose value (RAV) of sediment, vegetation density (VD), patch length (PL) and patch width (PW). The numerical results and analysis show that: (1) the RAV of sediment with slope-failure parametrization only influences the shape of the transverse bed topography in the junction region; (2) increase in VD, PL and PW that substantially enhances flow blockage effect encourages the growth of the pool adjacent to the patch in three dimensions; (3) increase in VD, PL and PW produces analogous retrogressive erosion (erosion toward the upstream) in the pool region, presumably due to the increase in flow resistance. Additional numerical experiments suggest that the staggered-order distribution of multiple patches might be an optimal choice for channel restoration and conservation since pools and riffles with larger scales can be produced.

  相似文献   

9.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

10.
The paper focuses on the numerical simulation of the exchange flow between open water and floating vegetation, which plays an important role in maintaining the ecological balance by transporting nutrient matter. The simulation was conducted using a new solver developed upon OpenFOAM. A modified RNG k-ε turbulence model, which is expected to model both the high- and low-Reynolds number flows correctly, was used to determine the eddy viscosity. Several particular terms were added into the momentum equations and turbulence model equations to model the effects of vegetation and buoyancy. Among these terms, the term for the effect of vegetation in the ε-equation was re-modelled. The model was validated by properly predicting the profiles of mean velocity and turbulent kinetic energy for flows through suspended canopies. The density flow between open and vegetated water was simulated with the same conditions as those of the experiment conducted by Zhang and Nepf. The predicted results agreed well with the experimental data and provided more detailed information of such exchange flow. The convection between the root layer and the layer beneath the roots, which was not observed in the experiment, was observed in the numerical simulation.  相似文献   

11.
This paper investigates flows around a free surface piercing cylinder with Froude number F > 0.5 and Reynolds number around Re = 50,000. The aim of this work is to gain a better understanding of the flow behaviour in environmental systems such as fishways. The advances are based upon experimental and numerical results. Several flow discharges and slopes are tested to obtain both subcritical and supercritical flows. The drag force exerted on the cylinder is measured with the help of a torque gauge while the velocity field is obtained using particle velocimetry. For the numerical part, two URANS turbulence models are tested, the k-\(\omega\) SST and the RNG k-\(\varepsilon\) models using the OpenFOAM software suite for subcritical cases, and then compared with the corresponding experimental results. With fishways applications in mind, the changes in drag coefficient \(C_d\) versus Froude number and water depth are studied and experimental correlations proposed. We conclude that the most suitable URANS turbulence model for reproducing this kind of flow is the k-\(\omega\) SST model.  相似文献   

12.
In the scope to create efficient nature like fish ramps using large-scale roughness elements, the present study is an audit of modelling such complex 3D free surface flows using an industrial 2D code solving shallow water equations. Validation procedure is based upon the comparison between numerous experimental measurements and numerical runs around large-scale roughness patterns disposed on the flume bottom in order to determine what 2D reliable numerical results can be expected. In this paper, we focused on cases of unsubmerged obstacles. The results demonstrate that 2D shallow water modelling using an industrial code such as TELEMAC-2D can be a convenient way for the hydraulic engineer to help design a nature-like fishway. This article emphasizes the limitations due to 2D depth integration of velocities and turbulence modelling and gives the domain of validity of the method.  相似文献   

13.
In this study, a modelling methodology is proposed for RANS simulations of neutral Atmospheric Boundary Layer (ABL) flows on the basis of the standard k-ε model, which allows the adoption of an arbitrary shear stress model. This modelling methodology is first examined in the context of an open flat terrain in an empty domain to ascertain there are no substantial changes in the prescribed profiles. The results show that relatively good homogeneity can be achieved with this modelling methodology for various sets of inflow boundary profiles. In addition, to extend the solutions derived from the standard k-ε model to RNG k-ε model, the RNG k-ε model is in detail assembly and tuned. Finally, the topographic effects on surface wind speeds over a complex terrain are assessed with the combined use of the proposed methodology and the modified RNG model. The numerical results are in good agreement with wind tunnel testing results and long-term field observations. A discussion of the effects of horizontal homogeneity and turbulence models on the simulated wind flows over a complex terrain is also given.  相似文献   

14.
The existence of an internal inorganic carbon pool in the perforate foraminifer Amphistegina lobifera, as suggested recently (ter Kuile and Erez 1987), has been established by direct measurements using a new 14C tracer method. The imperforate species Amphisorus hemprichii does not contain such a pool. The size of the pool in A. lobifera is proportional to its calcification rate and approximately equals the amount of carbon incorporated into the skeleton during 24 h. Time course experiments show that inorganic carbon (Ci) is photoassimilated at constant rates by the algal symbionts, that the pool is filled to maximum capacity in ca. 24 h, and that Ci incorporation into the skeleton starts only after the pool is filled up. During the chase phase of pulsechase experiments, all 14C initially residing in the pool is transferred to the skeleton, indicating that the pool serves for calcification and not for photosynthesis. Uptake of Ci into the pool occurs only in the light, indicating that energy may be required for this process. Furthermore, calculations of the Ci concentration inside the pool suggest that it is higher by 2 to 3 orders of magnitude compared to seawater concentration, suggesting that its accumulation is an energy dependent process.  相似文献   

15.
Laboratory experiments are conducted to quantify the mean flow structure and turbulence properties downstream of a spanwise suspended linear array in a uniform ambient water flow using Particle Tracking Velocimetry. Eighteen experimental scenarios, with four depth ratios (array depth to water column depth) of 0.35, 0.52, 0.78, and 0.95 and bulk Reynolds number (length scale is the array depth) from 11,600 to 68,170, are investigated. Three sub-layers form downstream of the array: (1) an internal wake zone, where the time-averaged velocity decreases with increasing distance downstream, (2) a shear layer which increases in vertical extent with increasing distance downstream of the array, and the rate of the increase is independent of the bulk Reynolds number or the depth ratio, and (3) an external wake layer with enhanced velocity under the array. The location of the shear layer is dependent on the depth ratio. The spatially averaged and normalized TKE of the wake has a short production region, followed by a decay region which is comparable to grid turbulence decay and is dependent on the depth ratio. The results suggest that the shear layer increases the transfer of horizontal momentum into the internal wake zone from the fluid outside of the array and that the turbulence in the internal wake zone can be modeled similarly to that of grid turbulence.  相似文献   

16.
Experiments have been carried out to investigate turbulence at and above roof-level in an urban environment, and to predict the behaviour of street pollution from experiments using dye dispersion, for different roughness conditions and bed geometries. The flow in the boundary layer above an idealised urban environment has been simulated in a laboratory water flume. Comparisons have been made for the same model street canyon with and without the presence of upstream roughness. In the tests reported here, model street canyons were aligned perpendicular to the flow direction, and velocity measurements made within and above the model street canyons using a laser Doppler velocimeter (LDV). Flow visualisation techniques have also been used to confirm the gross flow features from streak images. Turbulence generated from the upstream roughness has a significant effect on the turbulence production and dispersion behaviour of the dye simulating pollution in street canyons.  相似文献   

17.
The estuary Byfjord (Sweden) is characterized by high primary production, a well developed meiofauna compared to the macrofauna, high epifaunal biomass, a low number of herbivorous copepods and a small fish stock. A simplified energy flow model of the ecosystem of the fjord is given. The energy transfer is approximated to 15%. About one-fourth-300 (metric) tons of carbon — of the annual primary production is suggested to be directly consumed and to produce 5 tons of zooplankton carbon and 40 tons of epifaunal (mainly Mytilus edulis) carbon. About 500 tons of carbon from the detritus pool are probably utilized in animal production. This amount will produce 5 tons of zooplankton carbon, 6 tons of meiofaunal carbon, and 3 tons of carbon from the benthic macrofauna. Production of fish is estimated at 0.3 ton carbon per year. M. edulis seems to be the only food resource in the fjord worth harvesting by man.  相似文献   

18.
Three turbulence closure models (RNG k-ε, SST k-ω and RSM) were used to investigate the flow characteristics around a two-dimensional isolated porous fence. The comparison between the numerical results and the experimental measurements indicated that RSM model shows a better performance than the other two models. The aim of this paper is to accurately and efficiently determine the optimum porosity that attain the best shelter effect of the wind fence in the near wake region (0–4hb) and in the far wake region (4hb–10hb) respectively, where hb is the height of the fence. The gradient algorithm was adopted as the optimization algorithm and the RSM model was used to model turbulent features of the flow. The shelter effect was parameterized by the peak velocity ratio involving velocity and turbulence. The objective was to reduce the peak velocity ratio in the near or far wake region by changing the design variable porosity (?) of the fence, which ranged between 2 and 60%. The results revealed that a porosity of 10.2% was found as the optimum value giving rise to the best shelter effect in the near wake region, and ? = 22.1% was determined in the case of the far wake region. In addition, based on the proposed optimization method, it is found that the recirculating bubble behind the fence can only be detected when ? < 29.9%.  相似文献   

19.
Turbulence closures are fundamental for modelling the atmospheric diffusion in numerical codes and the resulting eddy diffusivities are key parameters in describing the transport and dispersion in the boundary layer. In this work, four turbulence closure schemes have been applied for reproducing a neutral flow over schematic complex terrain using the meteorological model RAMS. Two of the closures, a one-equation (E-l) and a two-equations (E-) model, have been implemented in RAMS in alternative to the ones originally available. In these cases, an analytical method based on the similarity theory for the atmospheric surface layer and boundary layer is adopted to calculate the empirical constants of the turbulence closures. Some examples of numerical studies performed to simulate the flow and turbulence over a 3-D hill in wind-tunnel experiment in neutral stratification are presented and discussed. An intercomparison of simulations related to different closures is considered by analysing the main features of the flow over the hill and by comparing calculated vertical profiles of turbulent kinetic energy with measured ones.  相似文献   

20.
Fundamental hydrodynamic and ecological processes of a lake or reservoir could be adequately depicted by one-dimensional (1D) numerical simulation models. Whereas, lakes with significant horizontal water quality and hydrodynamic gradients due to their complex morphometry, inflow or water level fluctuations require a three-dimensional (3D) hydrodynamics and ecological analyses to accurately simulate their temporal and spatial dynamics. In this study, we applied a 3D hydrodynamic model (ELCOM) coupled with an ecological model (CAEDYM) to simulate water quality parameters in three bays of the morphologically complex Lake Minnetonka. A considerable effort was made in setting up the model and a systematic parameterization approach was adopted to estimate the value of parameters based on their published values. Model calibration covered the entire length of the simulation periods from March 29 to October 20, 2000. Sensitivity analysis identified the top parameters with the largest contributions to the sensitivity of model results. The model was next verified with the same setup and parameter values for the period of April 25 to October 10, 2005 against field data. Spatial and temporal dynamics were well simulated and model output results of water temperature (T), dissolved oxygen (DO), total phosphorus (TP) and one group of algae (Cyanobacteria) represented as chlorophyll a (Chla) compared well with an extensive field data in the bays. The results show that the use of the model along with an accurate bathymetry, a systematic calibration and corroboration (verification) process will help to analyze the hydrodynamics and geochemical processes of the morphologically complex Lake Minnetonka. An example of an ecological application of the model for Lake Minnetonka is presented by examining the effect of spatial heterogeneity on coolwater fish habitat analysis in 3D and under a scenario where horizontal spatial heterogeneity was eliminated (1D). Both analyses captured seasonal fish habitat changes and the total seasonal averages differed moderately. However, the 1D analysis did not capture local and short duration variabilities and missed suitable fish habitat variations of as much as 20%. The experiment highlighted the need for a 3D analysis in depicting ecological hot spots such as unsuitable fish habitats in Lake Minnetonka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号