首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Tidal creeks and their associated salt marshes are the primary link between uplands and estuaries in the southeastern region. They are also critical nursery and feeding grounds. In addition, the uplands surrounding creeks are preferred sites for homebuilding because of their natural beauty and the ability to access the estuary from a personal dock structure. The objective of this study was to evaluate the cumulative impacts of docks on tidal creek nursery habitats for both small and large tidal creeks. The number of docks was associated with the amount of impervious cover in both small and large creeks. The presence of docks had little measurable effect on sediment metal concentrations at the scale of small and large creeks. In small and large creeks, sediment polycyclic aromatic hydrocarbon (PAH) concentrations were related to the human activity in the upland that includes the presence of docks at the scale of small and large creeks. Some impacts on the benthic community were associated with docks and human activity in small creeks but not in large creeks. Suburban development may reduce fish and crustacean abundances, but the dock may potentially mediate the development effect. Individually, the harm to the marine environment resulting from dock shading, chrominated copper arsenate leachates, and PAH contamination was small at the scale of tidal creeks. However, impacts from dock structures could not be separated from anthropogenic watershed-scale effects. These results demonstrate that suburban development with its accompanying dock construction does represent a major source of environmental degradation to tidal creeks and associated salt marsh habitats.  相似文献   

2.
Land use in Korean tidal wetlands: impacts and management strategies   总被引:3,自引:0,他引:3  
The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.  相似文献   

3.
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.  相似文献   

4.
/ Tidal marshes have been actively restored in Connecticut for nearly 20 years, but evaluations of these projects are typically based solely on observations of vegetation change. A formerly impounded valley marsh at the Barn Island Wildlife Management Area is a notable exception; previous research at this site has also included assessments of primary productivity, macroinvertebrates, and use by fishes. To determine the effects of marsh restoration on higher trophic levels, we monitored bird use at five sites within the Barn Island complex, including both restoration and reference marshes. Use by summer bird populations within fixed plots was monitored over two years at all sites. Our principal focus was Impoundment One, a previously impounded valley marsh reopened to full tidal exchange in 1982. This restoration site supported a greater abundance of wetland birds than our other sites, indicating that it is at least equivalent to reference marshes within the same system for this ecological function. Moreover, the species richness of birds and their frequency of occurrence at Impoundment One was greater than at 11 other estuarine marshes in southeastern Connecticut surveyed in a related investigation. A second marsh, under restoration for approximately ten years, appears to be developing in a similar fashion. These results complement previous studies on vegetation, macroinvertebrates, and fish use in this system to show that, over time, the reintroduction of tidal flooding can effectively restore important ecological functions to previously impounded tidal marshes.KEY WORDS: Estuarine; Tidal marsh; Wetland birds; Restoration  相似文献   

5.
Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, aSalicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity ofS. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact  相似文献   

6.
Salt marshes dominated by Spartina alterniflora and the associated networks of tidal creeks that drain them are characteristic geographical features of southeastern estuaries, important nursery habitat areas, and preferred sites for residential development. As the size of the coastal population increases, so has the number of requests for dock permits. With each new request for a dock permit, public concerns about the cumulative environmental impacts of dock proliferation on the coastal environment have increased. The objective of this particular study was to evaluate the impacts of shading by dock structures on stem densities of S. alterniflora in South Carolina coastal marshes. Shading impacts under individual docks were extrapolated to the tidal creek (local), county, and statewide scales. Dock structures were sampled both under and next to the walkway in the Charleston Harbor area of South Carolina. The density of S. alterniflora under docks was significantly lower than that which occurred next to the docks (i.e., 5 m away) for the short-form, tall-form, and both forms combined. We estimated that shading effects from dock structures in South Carolina decreased the stem density of S. alterniflora by 71%. Dock shading effects were small when evaluated from the perspective of the amount of marsh that occurs within specific tidal creeks (0.03–0.72%), in coastal counties at a maximum dock length (0.01–0.98%), or statewide (0.01–0.13%) at a maximum dock length. However, approximately 7,000 docks have been permitted over the last decade, resulting in a loss of salt marsh equivalent to 60 ha.1Denise M. Sangers present address: Office of Ocean and Coastal Resource Management, South Carolina Department of Health and Environmental Control, 1362 McMillan Avenue, Suite 400 Charleston, South Carolina 29405, USA. 2 A. Frederick Hollands present address: Hollings Marine Laboratory, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA.  相似文献   

7.
Many coastal resource managers believe estuarine marshes are critically important to estuarine fish and shellfish, not only because of the habitat present for juvenile stages, but also because of the export of detritus and plant nutrients that are consumed in the estuary. Concern has been widely expressed that diking and flooding marshes (impounding) for mosquito control and waterfowl management interferes with these values of marshes. Major changes caused by impoundment include an increase in water level, a decrease in salinity, and a decrease in the exchange of marsh water with estuarine water. Alteration of species composition is dramatic after impoundment. Changes in overall production and transport phenomena, however—and the consequences of these changes— may not be as great in some cases as the concern about these has implied. Although few data are available, a more important concern may be the reduction of access by estuarine fish and shellfish to the abundant foods and cover available in many natural, as well as impounded, marshes. Perhaps even more important is the occasional removal of free access to open water when conditions become unfavorable in impounded marsh that is periodically opened and closed. Collection of comparative data on the estuarine animal use of various configurations of natural and impounded marshes by estuarine animals should lead to improved management of both impounded and unimpounded marshes.  相似文献   

8.
Estuarine dredge and fill activities: A review of impacts   总被引:1,自引:0,他引:1  
Dredge and fill activities in estuaries have many environmental effects, most, although not all, of them deleterious. These effects include reduced light penetration by increased turbidity; altered tidal exchange, mixing, and circulation; reduced nutrient outflow from marshes and swamps; increased saltwater intrusion; and creation of an environment highly susceptible to recurrent low dissolved oxygen levels. Coral, oysters, and barnacles are particularly vulnerable to the effects of siltation. Both estuarine flora and fauna may be harmed by contaminants released into the water column by dredging operations. Ways to mitigate the effects of dredge and fill operations include careful pre- and post-construction environmental studies; use of bridging to create roadbeds where coastal wetlands cannot be avoided; use of a turbidity diaper and other means to control turbidity; dredging during periods of low benthic populations or during tides that would carry coarser sediments away from productive areas such as oyster reefs; and thoughtful disposal of spoil, such as locating spoil sites on the uplands with proper diking.  相似文献   

9.
ABSTRACT: This study analyzes possible causes of shallow ground water salinization in the coastal area of Yun‐Lin. The local hydro‐geologic setting is determined from geological drilling data and sea floor topography. Three possible causes (sea water intrusion, salt water percolation through wells, and infiltration of salty water from fish ponds) are evaluated. Chloride concentration is used as an index to measure ground water salinization. Sea water intrusion is modeled by the advective/dispersive equation, and salt water infiltration from wells and fish ponds is calculated by estimating the amount of water percolated. The determined local hydrogeologic setting suggests that the shallow aquifer may be connected to the sea water, resulting in salt water intrusion as a large amount of shallow ground water is withdrawn. The percent contributions of sea water intrusion, percolation through wells, and infiltration of water from fish ponds, to the salinization of the shallow aquifer at Ko‐Hu in the Yun‐Lin coastal area are approximately 27 percent, less than 1 percent and 73 percent, respectively. The results suggest that the vertical infiltration of salt water from fish ponds is the major cause of shallow ground water salinization in the coastal area of Yun‐Lin.  相似文献   

10.
Marsh creation is currently receiving wide attention in the United States as an important tool for mitigating the impacts of development in coastal wetlands. The perception that there is no net loss in valuable coastal wetlands when development is mitigated by the creation of man-made marshes can have a substantial impact on the permitting and decision-making processes. The effective result may be the trading of natural salt marshes for man-made marshes.Techniques for marsh creation were developed by the US Army Corps of Engineers to enhance and stabilize dredge spoil materials. Most research sponsored by the Corps has been directed at determining whether these goals have been accomplished. A survey of the research indicates that there is insufficient evidence to conclude that man-made marshes function like natural salt marshes or provide the important values of natural marshes. It is necessary, therefore, for decision-makers to understand the limitations of present knowledge about man-made marshes, realistically evaluate the trade-offs involved, and relegate mitigation to its proper role in the permitting process—post facto conditions imposed on developments that clearly meet state qualifications and policies.  相似文献   

11.
As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.  相似文献   

12.
During the last two decades, the State of Connecticut has restored tidal flow to many impounded salt marshes. One of the first of these and the one most extensively studied is Impoundment One in the Barn Island Wildlife Management Area in Stonington, Connecticut. In 1990, twelve years after the re-establishment of tidal flooding, the density of the marsh snail Melampus bidentatus, the numerically dominant macroinvertebrate of the high marsh, in Impoundment One was about half that in reference marshes below the breached impoundment dike. By 1999 the densities of Melampus above and below the dike were not significantly different, but the shell-free biomass was greater above the dike as a result of the somewhat larger number and size of the snails there. Twenty-one years after the renewal of tidal flooding, three marsh macroinvertebrates (the amphipods Orchestia grillus and Uhlorchestia spartinophila and the mussel Geukensia demissa) were significantly less abundant in the previously impounded marsh than in the reference marshes, whereas another amphipod (Gammarus palustris) was more abundant above the breached dike where conditions appeared to be somewhat wetter. In 1991 the fish assemblage in a mosquito-control ditch in Impoundment One was similar to that in a ditch below the breached dike; however, the common mummichog Fundulus heteroclitus appeared to be less abundant in the restoring marsh. By 1999 the number of mummichogs caught in ditches was significantly greater in Impoundment One than in the reference marsh, but the numbers of mummichogs trapped along the tidal creek were comparable above and below the dike. The results obtained in this study and those of other restoring marshes at Barn Island indicate the full recovery of certain animal populations following the reintroduction of tidal flow to impounded marshes may require up to two or more decades. Furthermore, not only do different species recover at different rates on a single marsh, but the time required for the recovery of a particular species may vary widely from marsh to marsh, often independently of other species.  相似文献   

13.
Global and continental scale flood forecast provide coarse resolution flood forecast, but from the perspective of emergency management, flood warnings should be detailed and specific to local conditions. The desired refinement can be provided by the use of downscaling global scale models and through the use of distributed hydrologic models to produce a high‐resolution flood forecast. Three major challenges associated with transforming global flood forecasting to a local scale are addressed in this work. The first is using open‐source software tools to provide access to multiple data sources and lowering the barriers for users in management agencies at local level. This can be done through the Tethys Platform that enables web water resources modeling applications. The second is finding a practical solution for the computational requirements associated with running complex models and performing multiple simulations. This is done using Tethys Cluster that manages distributed and cloud computing resources as a companion to the Tethys Platform for web app development. The third challenge is discovering ways to downscale the forecasts from the global extent to the local context. Three modeling strategies have been tested to address this, including downscaling of coarse resolution global runoff models to high‐resolution stream networks and routing with Routing Application for Parallel computatIon of Discharge (RAPID), the use of hierarchical Gridded Surface and Subsurface Hydrologic Analysis (GSSHA) distributed models, and pre‐computed distributed GSSHA models.  相似文献   

14.
9 m3, a volume equal to the basin. During the rainy season, June–September, 84% of the annual discharge occurs, which causes the bay to become brackish. Port Honduras serves as an important nursery ground for many species of commercially important fish and shellfish. The removal of forest cover in the uplands, as a result of agriculture, aquaculture, and village development, is likely to significantly accelerate erosion. Increased erosion would reduce soil fertility in the uplands and negatively affect mangrove, seagrass, and coral reef productivity in the receiving coastal embayment. Alternatively, the conservation of an existing protected areas corridor, linking the Maya Mountains to the Caribbean Sea, is likely to enhance regional sustainable economic development. This study aims to support environmental management at the scale of the “ecoscape”—a sensible ecological unit of linked watersheds and coastal and marine environments.  相似文献   

15.
.Fish and wildlife enhancement through water resources development implies fish and wildlife will be enhanced or benefit directly from such development. As a matter of practicality, the opposite may be the case in that wildlife lands of prime value and stream fisheries are often lost or severely altered as a result of reservoir construction or stream channelization. Additionally, estuarine fish and wildlife can also suffer from water resources development due to reductions in volume of fresh waters reaching the estuaries and adjacent marshes. In some instances waterfowl habitat can be created by reservoir construction and with good planning waterfowl habitat and use may be enhanced. To offset losses of thousands of acres of wildlife habitat when a river system is to be totally harnessed, planners could set aside sufficiently large natural areas dedicated for use by wildlife. This, however, would be replacement rather than enhancement. Reservoir fisheries can be enhanced with good planning to include timber clearing, shoreline clearing, boat road clearing, variable level drawoff devices and tailrace escapement channels. To sum up, it is possible for some species offish and wildlife to be enhanced through water resources development but only at the expense of others, and then only through careful and integrated planning.  相似文献   

16.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   

17.
The status of wild capture fisheries has induced many fisheries and conservation scientists to express concerns about the concept of using forage fish after reduction to fishmeal and fish oil, as feed for farmed animals, particularly in aquaculture. However, a very large quantity of forage fish is being also used untransformed (fresh or frozen) globally for other purposes, such as the pet food industry. So far, no attempts have been made to estimate this quantum, and have been omitted in previous fishmeal and fish oil exploitation surveys. On the basis of recently released data on the Australian importation of fresh or frozen fish for the canned cat food industry, here we show that the estimated amount of raw fishery products directly utilized by the cat food industry equates to 2.48 million metric tonnes per year. This estimate, plus the previously reported global fishmeal consumption for the production of dry pet food suggest that 13.5% of the total 39.0 million tonnes of wild caught forage fish is used for purposes other than human food production. This study attempts to bring forth information on the direct use of fresh or frozen forage fish in the pet food sector that appears to have received little attention to this date and that needs to be considered in the global debate on the ethical nature of current practices on the use of forage fish, a limited biological resource.  相似文献   

18.
Remote Sensing of Landscape-Level Coastal Environmental Indicators   总被引:5,自引:1,他引:4  
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.  相似文献   

19.
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.  相似文献   

20.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号