共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Shuman LM 《Journal of environmental quality》2002,31(5):1710-1715
Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist. 相似文献
3.
Jaynes DB Colvin TS Karlen DL Cambardella CA Meek DW 《Journal of environmental quality》2001,30(4):1305-1314
The relationships between N fertilizer rate, yield, and NO3 leaching need to be quantified to develop soil and crop management practices that are economically and environmentally sustainable. From 1996 through 1999, we measured yield and NO3 loss from a subsurface drained field in central Iowa at three N fertilizer rates: a low (L) rate of 67 kg ha(-1) in 1996 and 57 kg ha(-1) in 1998, a medium (M) rate of 135 kg ha(-1) in 1996 and 114 kg ha(-1) in 1998, and a high (H) rate of 202 kg ha(-1) in 1996 and 172 kg ha(-1) in 1998. Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] were grown in rotation with N fertilizer applied in the spring to corn only. For the L treatment, NO3 concentrations in the drainage water exceeded the 10 mg N L(-1) maximum contaminant level (MCL) established by the USEPA for drinking water only during the years that corn was grown. For the M and H treatments, NO3 concentrations exceeded the MCL in all years, regardless of crop grown. For all years, the NO3 mass loss in tile drainage water from the H treatment (48 kg N ha(-1)) was significantly greater than the mass losses from the M (35 kg N ha(-1)) and L (29 kg N ha(-1)) treatments, which were not significantly different. The economically optimum N fertilizer rate for corn was between 67 and 135 kg ha(-1) in 1996 and 114 and 172 kg ha(-1) in 1998, but the net N mass balance indicated that N was being mined from the soil at these N fertilizer levels and that the system would not be sustainable. 相似文献
4.
Chantigny MH Rochette P Angers DA Bittman S Buckley K Massé D Bélanger G Eriksen-Hamel N Gasser MO 《Journal of environmental quality》2010,39(5):1545-1553
Treatment of liquid swine manure (LSM) offers opportunities to improve manure nutrient management. However, N2O fluxes and cumulative emissions resulting from application of treated LSM are not well documented. Nitrous oxide emissions were monitored following band-incorporation of 100 kg N ha(-1) of either mineral fertilizer, raw LSM, or four pretreated LSMs (anaerobic digestion; anaerobic digestion + flocculation: filtration; decantation) at the four-leaf stage of corn (Zea mays L.). In a clay soil, a larger proportion of applied N was lost as N2O with the mineral fertilizer (average of 6.6%) than with LSMs (3.1-5.0%), whereas in a loam soil, the proportion of applied N lost as N2O was lower with the mineral fertilizer (average of 0.4%) than with LSMs (1.2-2.4%). Emissions were related to soil NO3 intensity in the clay soil, whereas they were related to water-extractable organic C in the loam soil. This suggests that N2O production was N limited in the clay soil and C limited in the loam soil, and would explain the interaction found between N sources and soil type. The large N2O emission coefficients measured in many treatments, and the contradicting responses among N sources depending on soil type, indicate that (i) the Intergovernmental Panel on Climate Change (IPCC) default value (1%) may seriously underestimate N2O emissions from fine-textured soils where fertilizer N and manure are band-incorporated, and (ii) site-specific factors, such as drainage conditions and soil properties (e.g., texture, organic matter content), have a differential influence on emissions depending on N source. 相似文献
5.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing. 相似文献
6.
S. Ferreira M. Cabral N.F. da Cruz R.C. Marques 《Journal of Environmental Planning and Management》2017,60(5):773-791
Local authorities are generally in charge of household packaging waste management operations, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the packaging industry and the local authorities (regarding the costs involved in selective collection and sorting). In the present study, the costs and benefits of recycling, from the perspective of local authorities, are compared for Portugal, Belgium and Italy (in Lombardia region), adopting the same economic–financial methodology. The results show that the industry is not paying the net cost of packaging waste management. If the savings attained by diverting packaging waste from other treatment operations are not considered, it seems that the industry should increase the financial support to local authorities. However, if the avoided costs with other treatments are considered as a benefit for local authorities, the costs are generally outweighed by the benefits, and the financial support could, therefore, be reduced. 相似文献
7.
Greenhouse gas emissions from two soils receiving nitrogen fertilizer and swine manure slurry 总被引:2,自引:0,他引:2
Jarecki MK Parkin TB Chan AS Hatfield JL Jones R 《Journal of environmental quality》2008,37(4):1432-1438
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil. 相似文献
8.
Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds 总被引:1,自引:0,他引:1
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds. 相似文献
9.
Oily food waste (FOG; fat + oil + greases) containing high concentrations of fat, oil and grease is produced by the food service, production, and processing industries. It has a high C to N ratio (90:1) and can recycle soil available N through immobilization and remineralization during its decomposition. Experiments were conducted at a farm (Hillsburg fine sandy loam; Typic Hapludalf) having rolling topography (5 and 9% slope) during 1995 and 1996. Objectives of this study were to (i) examine the variability of available N and corn (Zea mays L.) grain yield at different landscape positions of FOG-amended fields and (ii) determine whether N fertilizer management could be improved by considering the spatial variability of soil NO(3)-N at different landscape positions in FOG-amended fields. A spatial and temporal variability in soil NO(3)-N was observed during both years. Corn grain yields at all N fertilizer application rates were affected by slope position and followed the pattern: lower > upper > or = middle. Nitrogen fertilizer requirements for corn production in conjunction with FOG management were also affected by slope position. Essentially no additional fertilizer N was required for corn production at the lower landscape position. It was estimated that site-specific fertilizer N management on FOG-amended fields could result in an average savings of 51 and 63 kg N ha(-1) (with a potential economical savings of US 42 dollars and US 52 dollars ha(-1)) during 1995 and 1996, respectively. 相似文献
10.
Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn-soybean rotation 总被引:1,自引:0,他引:1
Nitrogen application can have a significant effect on soil carbon (C) pools, plant biomass production, and microbial biomass C processing. The focus of this study was to investigate the short-term effect of N fertilization on soil CO(2) emission and microbial biomass C. The study was conducted from 2001 to 2003 at four field sites in Iowa representing major soil associations and with a corn (Zea mays L.)-soybean (Glycine max L. Merr.) rotation. The experimental design was a randomized complete block with four replications of four N rates (0, 90, 180, and 225 kg ha(-1)). In the corn year, season-long cumulative soil CO(2) emission was greatest with the zero N application. There was no effect of N applied in the prior year on CO(2) emission in the soybean year, except at one of three sites, where greater applied N decreased CO(2) emission. Soil microbial biomass C (MBC) and net mineralization in soil collected during the corn year was not significantly increased with increase in N rate in two out of three sites. At all sites, soil CO(2) emission from aerobically incubated soil showed a more consistent declining trend with increase in N rate than found in the field. Nitrogen fertilization of corn reduced the soil CO(2) emission rate and seasonal cumulative loss in two out of three sites, and increased MBC at only one site with the highest N rate. Nitrogen application resulted in a reduction of both emission rate and season-long cumulative emission of CO(2)-C from soil. 相似文献
11.
Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions 总被引:4,自引:0,他引:4
Sainju UM Senwo ZN Nyakatawa EZ Tazisong IA Reddy KC 《Journal of environmental quality》2008,37(3):880-888
Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0- to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete factorial combinations of three tillage practices (no-till [NT], mulch till [MT], and conventional till [CT]), two cropping systems (cotton [Gossypium hirsutum L.]-cotton-corn [Zea mays L.] and rye [Secale cereale L.]/cotton-rye/cotton-corn), and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH(4)NO(3) and 100 and 200 kg N ha(-1) from poultry litter). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop residue varied among treatments and years and total residue from 1997 to 2005 was greater in rye/cotton-rye/cotton-corn than in cotton-cotton-corn and greater with NH(4)NO(3) than with poultry litter at 100 kg N ha(-1). The SOC content at 0 to 20 cm after 10 yr was greater with poultry litter than with NH(4)NO(3) in NT and CT, resulting in a C sequestration rate of 510 kg C ha(-1) yr(-1) with poultry litter compared with -120 to 147 kg C ha(-1) yr(-1) with NH(4)NO(3). Poultry litter also increased PCM and MBC compared with NH(4)NO(3). Cropping increased SOC, POC, and PCM compared with fallow in NT. Long-term poultry litter application or continuous cropping increased soil C storage and microbial biomass and activity compared with inorganic N fertilization or fallow, indicating that these management practices can sequester C, offset atmospheric CO(2) levels, and improve soil and environmental quality. 相似文献
12.
Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer 总被引:1,自引:0,他引:1
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes. 相似文献
13.
Anke Fischer Fransje Langers Birgit Bednar-Friedl Nicoleta Geamana Ketil Skogen 《Journal of environmental psychology》2011,31(2):118-128
Despite a growing body of literature on public views on biodiversity and nature, our understanding of public attitudes towards animal and plant species is still rudimentary. This study investigates mental representations, constituted by beliefs, of three types of species (a large mammal, a spider and a non-native plant), and explores their links with cultural factors such as value orientations and cultural capital, in order to better understand attitudes towards these species.We conducted a survey in eight sites across Europe (n = 2378) and found strong relationships between beliefs about species, in particular with regard to their harmlessness, value and previous population change, and the desirability of an increase in this species. Other beliefs, such as perceived nativeness, were less influential. We discuss how respondents combined beliefs to mental representations of species, and show how representations are related to species-independent factors that tap respondents’ cultural context, such as socially shared value orientations and education. 相似文献
14.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection. 相似文献
15.
16.
The effects of water and fertilizer best management practices (BMPs) have not been quantified for groundwater nitrogen (N) beneath seepage irrigated vegetable fields with shallow water table environments. This effect was evaluated by a 3-yr study conducted in the Flatwoods of south Florida for watermelon ( cv. Mardi Gras and Tri-X 313) and tomato ( cv. BHN 586) using three treatments of water and inorganic fertilizer N (N) rates: (i) high fertilizer and water rates with seepage irrigation (HR), (ii) recommended fertilizer and water rates (BMP) with seepage irrigation (RR); and (iii) RR with subsurface drip irrigation (RR-SD). These treatments were implemented on six hydraulically isolated plots. The N rate treatments for high (HR) and recommended (RR and RR-SD) were based on a grower survey and BMP recommendations, respectively. Water applied, water table depth, and soil moisture content were regularly monitored for each treatment. Plant, soil, and groundwater N sampling and analyses were conducted for each season of the 3-yr study. The average water applied in HR (187 cm) was greater than RR (172 cm) and RR-SD (94 cm). Soil N maintained in crop beds for HR was significantly higher than RR and RR-SD. Soil solution analyses showed that N leached beneath HR (112 mg L) was greater ( = 0.053) than RR (76 mg L) and RR-SD (88 mg L). Shallow groundwater concentrations of dissolved inorganic nitrogen (NH-N + NO-N) were higher ( = 0.02) in HR (37 mg L) compared with RR (15 mg L) and RR-SD (19 mg L). Decreased N and water table levels can improve groundwater quality by reducing N leachate in shallow water table environments with seepage irrigated vegetable production systems. 相似文献
17.
From Europe to North America into the world and atmosphere: a short review of global footprints and their impacts and predictions 总被引:1,自引:1,他引:0
Falk Huettmann 《The Environmentalist》2012,32(3):289-295
Humans are now virtually found everywhere in the world. They changed the global nitrogen and phosphate cycles, create light pollution and affect the soundscapes, even in remote wilderness areas. The destruction of the earth and its original habitat is found on land, in the ocean and now, in the atmosphere. Of note are the big impacts from the many small contaminations (e.g., Ott in Sound truth and corporate myths: the legacy of the Exxon Valdez oil spill. Dragonfly Sisters Press, Cordova, 2005). The global magnitude of this man-made impact is virtually unprecedented in human history. Indigenous populations lived within earth??s carrying capacity for easily over 10,000?years, and they never caused such global impacts. It is obvious from most metrics that these problems steeply increased during the last 50?years. This suggests that global procedures and policies, and arguably driven by western industrialized countries, cultures and institutions setting the global framework, are affecting sustainability in dramatic ways. Based on documented and public sources, here I show the brief history, European thought, its global expansion, successes and global sustainability failures. There is an inherent and widely acknowledged conflict between growing the gross domestic product (GDP) and biodiversity, and when considering that we all live on one finite world. Works by Daly, Diamond, Flannery, Shtilmark, Leopold and many others make that already widely clear. Our land- and seascapes are currently overcommitted. With an increase of the human population of over 9?billion people in the next 100?years??likely earlier??we are at the very brink of biodiversity and humanity, and of the earth as we know it. Business as usual, and purely technical and industrial environmental efforts will not help us, and instead, we need a sustainability reform of institutions, education, funding schemes, cultures and society if we want to keep striving, or at least maintain the status quo. 相似文献
18.
《Resources Policy》2003,29(1-2):15-36
The number of operating mines has fallen sharply for most mineral products, and the average size of mine risen, with the changes gathering momentum during the 1990s. The paper looks at trends in copper, zinc and gold, and then explores the relationship between size and unit costs in copper mining, separately for underground and open-pit mines, in order to ascertain the existence and importance of economies of scale. Changes in mine size have been accompanied by major technological and geographical shifts. There is only a weak relationship between the scale of mines and overall unit costs per tonne of copper produced. The paper discusses the data and explores some of the reasons. 相似文献
19.
Existing research on the effects of congestion in wilderness areas suffers from problems associated with asking people directly what they would be willing to pay to avoid congestion under hypothetical circumstances. The work reported here is based on methodologies that infer conclusions from observed behavior. Two inferential methodologies are used to examine visitors' willingness to pay at three California wilderness areas during peak and off-peak use periods. Inferential methodologies do not provide unambiguous measures of consumer surplus. However, they do yield the conclusion that, with the exception of a relatively few individuals, solitude is not of overriding importance. Convenience of timing and the attributes of different wilderness areas appear to be more important than congestion. 相似文献
20.
第二次世界大战日本战败后,把主要精力放在发展经济上,其结果是环境受到污染,公害发生。文章阐述了日本环境公害的发生及其治理措施,对提高人们防治公害的意识具有积极的借鉴意义。 相似文献