首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采集了武汉市工业区和植物园2011年10月—2012年7月不同季节的PM_(2.5)样品,测定其化学组成并解析来源。结果表明,工业区和植物园PM_(2.5)年均质量浓度分别为179.7、92.8μg/m3,其中SO2-4、NO-3和NH+4是最主要的水溶性离子。通过气团的后向轨迹模型分析,本地源与远距离区域传输共同影响武汉市空气质量。采用正定矩阵因子分析(PMF)模型对PM_(2.5)来源进行了解析,工业区PM_(2.5)来源为二次气溶胶、生物质燃烧、扬尘、冶金、燃煤和残油燃烧,春、夏、秋、冬4季贡献率最高的因子分别为生物质燃烧(45.1%)、残油燃烧(23.1%)、扬尘(56.1%)和二次气溶胶(53.4%);植物园PM_(2.5)来源为二次气溶胶、机动车排放、扬尘、冶金、燃煤和残油燃烧,春、秋两季机动车排放贡献率最高,分别为42.7%、41.3%;夏季和冬季分别为扬尘和二次气溶胶贡献最高,贡献率分别为27.3%、57.4%。  相似文献   

2.
通过采集鞍山市城市PM_(2.5)样品,使用气相色谱—质谱联用仪分析PM_(2.5)样品中的多环芳烃(PAHs)含量,并进行PAHs组成特征及来源研究。结果表明,鞍山市6个采样点13种PAHs质量浓度总和为10.54~14.26ng/m3,平均为12.08ng/m3,苯并[a]芘日均浓度均未超过《环境空气质量标准》(GB 3095—2012)日均浓度限值;低分子量PAHs比例较低,5、6环PAHs呈相对优势分布,表明交通污染源对鞍山市PM_(2.5)中的PAHs贡献较大;利用比值法和主成分分析(PCA)法对PAHs来源进行解析,两种方法均表明,PAHs污染主要来自柴油、煤炭燃烧源和焦炉源,污染类型为煤烟和交通复合型。  相似文献   

3.
南昌市夏季PM_(2.5)中多环芳烃来源解析   总被引:1,自引:0,他引:1  
在南昌市设立了5个不同功能区采样点,分别为居民区、工业区、商业区、交通干线区以及郊区,于2008年夏季进行PM2.5采样,对样品进行测定和分析后,通过因子分析法判断PM2.5中多环芳烃(PAHs)的主要污染源,再利用多元线性回归法确定各主要污染源对PAHs的贡献率。结果表明,南昌市夏季PM2.5中PAHs的主要污染源为车辆排放源、高温加热源、燃煤污染源,它们对PAHs的贡献率分别为37.9%、28.2%和22.0%;要控制南昌市夏季PM2.5中的PAHs,主要是要对机动车尾气排放量进行控制,并加强机动车尾气治理工作。  相似文献   

4.
使用中流量采样器采集温州城区2015年4个季节的大气PM_(2.5)样品,利用气相色谱(GC)—质谱(MS)联用仪对PM_(2.5)样品中16种优先控制的多环芳烃(PAHs)进行分析,研究PM_(2.5)中PAHs的污染特征及其可能来源。结果显示,PM_(2.5)中总PAHs质量浓度为5.12~81.59ng/m~3,且表现为冬季秋季春季夏季,季节性变化特征明显。比值法和主成分分析显示,温州城区大气PM_(2.5)中PAHs的主要污染源是燃煤、机动车尾气以及生物质燃烧。总PAHs日均毒性当量浓度为0.44~11.28ng TEFs/m~3,平均值为3.44ng TEFs/m~3。成人和儿童的终生超额致癌风险(ILCR)年均值分别为7.11×10~(-7)、4.98×10~(-7),表明温州城区PM_(2.5)中PAHs对人体健康影响水平较低,在可接受范围内。  相似文献   

5.
南昌市秋季大气PM_(2.5)浓度及化学组分特征分析   总被引:1,自引:0,他引:1  
2013年秋季在南昌市6个空气自动站点连续采集了10d的大气PM2.5样品,对采集的样品进行无机元素、有机碳、元素碳和水溶性离子等组分的分析。结果表明,监测期间南昌市PM2.5均值都低于《环境空气质量标准》(GB 3095—2012)二级标准限值(75μg/m3)。南昌市大气PM2.5主要组成元素为S、Si、Ca、Al、Fe、Na和Mg,说明城市扬尘、建筑水泥尘和燃煤尘等源类贡献率高;SO2-4、NO-3和NH+4是最主要的水溶性离子,NO-3与SO2-4浓度比为0.63,说明相比于固定源,以机动车排放为代表的流动源对南昌市大气PM2.5浓度影响更大;有机碳/元素碳(质量比)为2.9,说明南昌市有显著的二次有机碳生成。  相似文献   

6.
于2014年1—4月在天津城区采集PM2.5样品,采用热光反射法测定样品中有机碳(OC)、元素碳(EC)及8个碳组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3、裂解碳(OP))的含量。结果表明,天津城区空气PM2.5中OC、EC质量浓度分别为(18.7±9.9)、(3.9±2.6)μg/m3,两者之和占PM2.5质量浓度的18.0%。采样期间OC与EC变化趋势一致,均呈现春节期间、普通采暖季浓度较高,非采暖季浓度较低的特点。对8个碳组分进行相关性分析,发现OC1~OC4及EC1~EC3分别来自相似的来源或受大气中类似的二次过程影响,主成分分析结果表明,燃煤、生物质燃烧和机动车排放对天津城区PM2.5中碳组分贡献显著。  相似文献   

7.
为探讨焦作市冬季PM_(2.5)中水溶性离子特征及其来源,于2017年12月至2018年2月在焦作市区连续采集大气颗粒物PM_(2.5)样品,测定其中9种水溶性离子浓度。结果表明,焦作市冬季PM_(2.5)质量浓度为(99.11±73.26)μg/m~3,总水溶性离子质量浓度为(66.88±48.68)μg/m~3,其中NO_3~-、SO_4~(2-)、NH4_+是水溶性离子的主要成分,3者合计占总水溶性离子的81.5%(质量分数)。与清洁天相比,污染天NO_3~-、SO_4~(2-)、NH_4~+在PM_(2.5)中的占比显著增加,表明人为活动排放的二次污染物是焦作市冬季污染天PM_(2.5)的主要贡献成分;随着相对湿度的增加,大气中存在明显的气溶胶二次转化过程;焦作市大气PM_(2.5)移动源贡献大于固定源。焦作市PM_(2.5)中水溶性离子在清洁天主要受工业和生物质燃烧影响,而在污染天主要受气态污染物二次转化影响;后向轨迹聚类显示,采样期间焦作市主要受京津冀地区、西北地区气团影响。  相似文献   

8.
2011年8月—2012年7月间于东莞市生活区(NC)点和工业区(ZT)点采集大气PM10/PM2.5/PM1样品,并检测分析了颗粒物上的多环芳烃(PAHs)和正构烷烃。粒径分布结果显示,PAHs和正构烷烃均主要富集在PM1上,而正构烷烃富集程度更高。PAHs环数分析结果显示,PM1中主导PAHs为6环,PM1~2.5和PM2.5~10中则为4环。利用特定比值法分析PAHs来源,结果表明,生活区NC点大气颗粒物中PAHs主要来自汽油车尾气、天然气燃烧、燃煤源和烹饪源,而工业区ZT点则主要来自柴油车尾气、燃煤和木材燃烧。通过主峰碳数、碳优势指数、植物蜡贡献率等方法分析正构烷烃来源,结果表明,化石燃料燃烧是东莞市大气颗粒物中正构烷烃的主要贡献源,其次是高等植物蜡排放,贡献率约为10.9%~28.9%。化石燃料燃烧源贡献率对PM1的贡献率明显较PM1~2.5和PM2.5~10高。  相似文献   

9.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

10.
于2013年9月(非采暖季)、2014年2-3月(采暖季)、2014年5月(风沙季)采集忻州市3个监测点(新城区、开发区和旧城区)的PM2.5样品,分析其中的39种元素、9种水溶性离子及2种碳组分,并对PM2.5的质量浓度进行重构。结果表明,重构后的化学组分分为5类:矿物尘、微量元素、有机物、元素碳和二次粒子,其中矿物尘、二次粒子及有机物是忻州PM2.5的主要组成,分别占到ρ(PM2.5)的24.0%~36.2%、19.2%~32.6%和12.9%~25.7%;化学组成质量分数具有较明显的季节变化特征,风沙季矿物尘质量分数高于采暖季和非采暖季,采暖季有机物质量分数高于其他两季,非采暖季二次粒子质量分数略高于其他两季;化学组分的空间变化显示会展中心站点的二次粒子和矿物尘质量分数明显高于其他2个站点。应用化学质量平衡(CMB)模型进行来源解析,结果显示忻州市PM2.5的主要来源是扬尘(21%~35%)、二次粒子(25%~26%)和机动车尾气(21%~26%)。  相似文献   

11.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

12.
采用离子色谱法测定武汉市秋、冬季大气PM2.5中水溶性离子浓度,对其化学组成、质量浓度变化特征及源解析等方面进行了研究。结果表明,NO-3、SO2-4、NH+4为武汉市秋、冬季大气PM2.5中主要的水溶性离子,相关性分析表明,燃烧源是秋、冬季大气PM2.5中水溶性离子的共同来源。成分分析表明,工业区的水溶性离子主要来源于燃烧源,交通区的水溶性离子主要来源于二次污染源,其中包括垃圾焚烧源,植物园的水溶性离子主要来源于二次污染源。  相似文献   

13.
利用轨迹聚类分析、轨迹扇区分析(TSA)和潜在源贡献函数(PSCF)分析3种方法研究了2013年6月至2016年5月舟山市的PM_(2.5)输送路径和潜在来源。聚类分析显示,舟山市PM_(2.5)夏季主要受来自偏南方向的气团影响,冬季主要受来自偏北和西北方向的气团影响,与季风方向一致,以短距离传输为主。TSA结果与轨迹聚类分析类似,综合考虑后向轨迹停留时间和PM_(2.5)平均浓度,研究期间西北和偏北方向的扇区对舟山市PM_(2.5)的贡献率最大,达47.3%。PSCF分析显示,舟山市PM_(2.5)的潜在来源贡献区域主要集中于江苏省、山东省南部、浙江省北部和安徽省东部。  相似文献   

14.
为明确浙江省龙游县环境中PM2.5的化学组分特征及来源,于2018年在龙游县3个代表性点位采集4个季节的环境PM2.5样品,分析了PM2.5中的无机元素、水溶性无机离子和碳组分含量,并采用化学质量平衡模型(CMB)计算了7类污染源的贡献率.结果表明:3个点位PM2.5平均质量浓度春季为39.63μg/m3、夏季为29....  相似文献   

15.
16.
基于山西省11个地级市2015年7月至2016年5月的PM_(2.5)月均浓度数据,运用地理信息系统(GIS)和分级统计法分析了山西省PM_(2.5)的时空变化特征。结果表明:山西省PM_(2.5)月平均浓度变化具有季节性,2015年8—9月和2016年4—5月污染较轻,2015年12月至2016年1月污染较严重;晋南各城市污染均比较严重,而位于晋北的大同市和晋西的吕梁市PM_(2.5)月均浓度一直处于达标状态。主成分分析发现,除吕梁市外,其他地级市对山西省PM_(2.5)污染的贡献接近,表明不同地级市的PM_(2.5)月均浓度变化主要受大尺度的天气变化影响。研究结果有利于了解山西省PM_(2.5)污染的时空分布格局,进而有助于针对性地开展污染防控工作。  相似文献   

17.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

18.
PM_(2.5)是中国空气质量的重要评价指标,影响着环境和人体健康。近年来,遥感反演已逐渐成为监测PM_(2.5)的热点。介绍了大气PM_(2.5)反演常用的遥感数据优缺点及适用范围,对遥感反演方法进行归纳和总结,阐述构建PM_(2.5)与气溶胶光学厚度关系模型、消除气象因素和垂直分布等参数影响的方法,并展望PM_(2.5)遥感反演在高时空分辨率数据和模型耦合等方面的发展趋势。  相似文献   

19.
当前细颗粒物PM2.5已成为城市环境的主要污染物,研究城市不对称街谷内PM2.5浓度的垂直分布特征,对居民日常生活与健康出行有现实意义。实验选取2013年3个不同阶段对高度在1~35 m范围的街谷进行PM2.5浓度监测,同时引用街谷内流场模型与浓度场模型,对PM2.5浓度垂直分布特征及成因进行探究。结果表明,不对称街谷受大气对流、风速、风向影响,街谷内细颗粒物存在不均匀分布特点,在较高侧随着壁面高度的增加PM2.5浓度大体呈S型曲线变化。同时在同一阶段监测的4天中街谷内PM2.5浓度分布特征大体一致,而阶段之间差异明显;街谷内PM2.5浓度垂直分布的最高浓度差出现在阶段1,高达75μg/m3,阶段2与阶段3浓度差相对减弱,仅在20~30μg/m3之间。通过阶段2与阶段3对比可知,北京冬季供暖燃煤对大气细颗粒物的贡献较大,导致颗粒物浓度偏高;而非采暖期气温回升,大气对流作用较强,有助于大气颗粒物扩散,因而街谷内PM2.5污染程度相对较低。  相似文献   

20.
根据水泥工业生产技术、生产过程以及PM_(2.5)排放控制水平,采用排放因子法核算了2013年中国大陆不同省份水泥工业PM_(2.5)排放量。估算结果表明:2013年中国大陆地区水泥工业PM_(2.5)排放总量为476.6万t,其中京津冀及周边7省份(包括北京、天津、河北、山东、山西、内蒙古、河南)的PM_(2.5)排放量合计占排放总量的21.3%;熟料水泥生产企业PM_(2.5)排放量占排放总量的73.1%,水泥磨站的PM_(2.5)排放量占26.9%;有组织PM_(2.5)排放量为307.8万t,占排放总量的64.6%,无组织PM_(2.5)排放量为168.8万t,占排放总量的35.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号