首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

2.
于2014年夏季,通过观测海淀公园不同区域沿道路不同宽度处PM_(2.5)浓度,研究PM_(2.5)浓度日变化规律、水平梯度分布规律、净化效益及其影响因素。结果表明,海淀公园内PM_(2.5)浓度日变化规律呈白天低晚上高的趋势,09:00—15:00时PM_(2.5)浓度达到国家标准Ⅱ类功能区浓度质量要求,05:00时PM_(2.5)浓度最高。不同观测区域一定宽度范围内出现PM_(2.5)浓度积聚,之后开始下降。总体上,海淀公园在13:00时对PM_(2.5)浓度净化效益最显著,09:00时净化效益最差。环城高速路区域与城市主干道区域165 m以上宽度处、城市次干道区域60 m以上宽度处为正净化效益,并维持正净化效益。海淀公园内PM_(2.5)浓度与气象因子之间相关关系表明,PM_(2.5)浓度与平均温度、相对湿度呈显著相关,与其他气象因素没有显著相关性。  相似文献   

3.
基于2014—2016年广州PM_(2.5)浓度逐时观测数据,研究了广州PM_(2.5)污染变化特征及其与气象因子的关系,确定了影响广州大气能见度的PM_(2.5)浓度阈值。结果表明:(1)2014—2016年广州PM_(2.5)质量浓度平均为32.7μg/m3,广州1月PM_(2.5)污染最重,轻度、中度、重度污染频率合计达20.16%;(2)PM_(2.5)浓度与风速、降水、气温、能见度呈负相关,与相对湿度、气压呈正相关;(3)广州地区在南风的条件下PM_(2.5)浓度最低,风速小于2m/s的偏北风下易出现污染;(4)PM_(2.5)浓度与相对湿度共同影响广州能见度的变化,随着相对湿度的增加,PM_(2.5)浓度的敏感阈值不断减小,通常当PM_(2.5)高于37.3μg/m3时,控制PM_(2.5)对改善城市能见度成效相对缓慢,而当PM_(2.5)浓度低于此阈值时,降低PM_(2.5)将显著提高大气能见度。  相似文献   

4.
为研究严寒地区供暖季室内外PM_(2.5)浓度的垂直分布,在供暖季分别对长春某高层居住建筑1、8、15、24、33楼层的室内外PM_(2.5)浓度进行监测,研究不同楼层室内外PM_(2.5)的浓度与变化特征。采用随机组分重叠模型(RCS)方法研究各楼层PM_(2.5)渗透因子,采用逐步回归分析方法研究室内PM_(2.5)浓度的各影响因素。结果表明:在供暖季,长春市高层建筑的不同楼层均存在一定的PM_(2.5)污染,室内外PM_(2.5)浓度随楼层升高大体呈现减小的趋势,但差异不显著。室内外PM_(2.5)浓度存在显著的相关性(P 0.05),在没有室内污染源时,室外颗粒物渗透是室内污染的主要来源。室内PM_(2.5)浓度与房间面积等没有显著相关性。  相似文献   

5.
无锡市区大气污染物污染特征及影响因素研究   总被引:1,自引:0,他引:1  
利用2014年无锡市区的6种大气污染物浓度和气象因子等监测数据,研究了无锡市区各种大气污染物的污染特征及其影响因素。结果表明:(1)无锡市区PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度的季节变化特征为冬季最高,夏季最低;O_3浓度表现为夏季最高,冬季最低。就全年的综合情况而言,颗粒物污染,尤其是PM_(2.5)污染最严重。(2)PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度间两两呈正相关;PM_(2.5)、SO_2、NO_2、CO浓度均与O_3浓度呈负相关。(3)温度与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度呈正相关;相对湿度与PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度呈负相关,与CO浓度无相关性;风级与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度无相关性。降水有利于PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度的降低,但对CO浓度影响不大。(4)无锡市区空气质量周末比工作日差。NO_2、SO_2浓度周末低于工作日,O_3浓度周末高于工作日,呈现明显的"周末效应";PM_(2.5)、CO浓度周末高于工作日,未出现"周末效应"。  相似文献   

6.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

7.
PM_(2.5)污染已成为当前经济发展中亟待解决的难题。从年、季、日变化及周末效应4个时间尺度和空间自相关分析研究了京津冀地区PM_(2.5)的时空效应,并构建空间回归模型量化分析相关社会经济因素对PM_(2.5)的影响。结果显示:(1)2013—2016年京津冀地区PM_(2.5)污染整体呈下降趋势,但污染程度依然很高,基本都没有达到《环境空气质量标准》(GB 3095—2012)二级标准(35μg/m~3)。四季的达标天数夏季春季秋季冬季。中南部的石家庄、保定、衡水、邢台、邯郸为PM_(2.5)浓度高值区,日变化曲线为单峰型,受工业企业生产排放的影响较大;北部的张家口、承德、秦皇岛为PM_(2.5)浓度低值区,中东部的天津、北京、沧州、唐山、廊坊为PM_(2.5)浓度中值区,日变化曲线均为双峰型,受机动车尾气排放的影响较大。石家庄、北京的周末效应表现为白天PM_(2.5)浓度工作日高于周末,晚上周末高于工作日。(2)京津冀地区PM_(2.5)存在显著的空间正相关性,2013—2016年石家庄、衡水、邢台、邯郸始终表现出高-高集聚特征,张家口、承德、秦皇岛始终保持低-低集聚特征。汽车尾气排放是京津冀地区PM_(2.5)污染的重要影响因素,而能源消耗的影响不显著。  相似文献   

8.
为探究人为因素和气象因素对道路区域PM_(2.5)浓度的影响,选择南京仙林大学城某条典型道路开展大气PM_(2.5)监测实验。结果表明,道路清扫抬升PM_(2.5)浓度,白天的抬升作用较傍晚和夜间更加显著。各类交通流对道路区域PM_(2.5)浓度的影响程度排序为:柴油车汽油车燃气车道路行人。PM_(2.5)浓度阴天高于晴天和多云天,霾日(209.3、80.5μg/m~3)高于非霾日(47.0、62.0μg/m~3);在霾日变化特征各异,在非霾日均呈"三峰"分布特征。非霾日,道路区域PM_(2.5)浓度的高值区与相对湿度的高值区,温度、风速的低值区重合;PM_(2.5)浓度的低值区与相对湿度的低值区,温度、风速的高值区重合。温度与PM_(2.5)浓度呈负相关(r=-0.501,P0.05),是影响PM_(2.5)污染程度的关键气象因子。由此可见,道路清扫、交通流和各类气象因素对道路区域PM_(2.5)浓度影响显著。  相似文献   

9.
利用质量平衡方程建立了一次回风定风量系统室内PM_(2.5)浓度模型,并对新风PM_(2.5)浓度、新风量、室内污染源、过滤器效率、过滤器安装位置等因素对室内PM_(2.5)浓度的影响进行了模拟分析。模拟结果表明:新风PM_(2.5)浓度和室内污染源强度的变化对室内PM_(2.5)浓度均有较大影响;新风量越大,室内PM_(2.5)浓度受新风PM_(2.5)浓度变化的影响越大;将过滤器分别安装在送风段、新风段和回风段新风比为0.1时,过滤器安装在送风段效果最好,安装在新风段最差,新风比为0.8时,过滤器安装在送风段效果最好,安装在回风段最差;过滤器安装在送风段时,过滤器效率越高,室内PM_(2.5)浓度越低,波动越小。  相似文献   

10.
为掌握室内外细颗粒物(PM_(2.5))污染特性,监测采集西安市某办公场所室内外PM_(2.5)样品,统计分析PM_(2.5)质量浓度特征,探究室内外PM_(2.5)相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM_(2.5)年均质量浓度分别为85.32和109.83μg·m~(-3),冬季污染尤为严重。室内PM_(2.5)受室外PM_(2.5)影响显著,室内外PM_(2.5)质量浓度的相关系数为0.890 0。室内PM_(2.5)多为粒径小于1μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM_(2.5)均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM_(2.5)中矿物多为非晶态物质,室外PM_(2.5)主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

11.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

12.
为了解贵阳市冬季大气污染现状,以贵阳市污染相对严重的白云区为研究对象,连续采集PM_(2.5)、PM_(10)浓度数据,利用普通克里金法进行空间插值获取PM_(2.5)、PM_(10)分布特征。通过留一法交叉验证,比较6种半变异函数模型(三角函数、高斯函数、球面函数、指数函数、J-Bessel函数和K-Bessel函数)的空间插值精度,选出最适的函数模型;采用分区统计和格网统计的方法,对不同土地利用类型、植被覆盖度下的PM_(2.5)、PM_(10)平均浓度进行比较分析。结果表明,三角函数是PM_(2.5)空间插值的最适模型,指数函数是PM_(10)空间插值的最适模型;贵阳市白云区冬季大气PM_(2.5)、PM_(10)浓度总体表现出城区浓度高,郊区浓度低的分布特征;土地利用类型和植被覆盖度对PM_(2.5)和PM_(10)浓度有着较强的影响。  相似文献   

13.
以北京市大兴区南海子公园26种常见树种配置为研究对象,应用Dustmate手持PM_(2.5)监测仪监测各配置PM_(2.5),结合气溶胶再发生器和叶面积扫描仪,分析单位叶面积PM_(2.5)吸附量,以综合探讨不同树种配置PM_(2.5)动态变化特征。结果表明:总体上,各树种配置中PM_(2.5)浓度呈现上午高、下午低的趋势,14:00最低。各树种配置中PM_(2.5)平均值表现为针阔混交林阔叶纯林阔阔混交林针叶纯林针针混交林,且6月9月7月10月5月8月。不同树种配置对PM_(2.5)的吸附能力差异较大,表现为针叶纯林针针混交林针阔混交林阔叶纯林阔阔混交林。因植物吸附PM_(2.5)能力取决于单位叶面积PM_(2.5)吸附量及其叶面积指数,进行树种配置时需同时考虑这两个因素,将不同生活型和具不同叶习性的植物合理混交配置,从而提高植被吸附和调控PM_(2.5)的能力,为优化城市绿化植物配置、降低空气中PM_(2.5)污染提供科学依据。  相似文献   

14.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

15.
对包含春节节日的2014年1月16日至2月15日太原市环境空气中O_3、NO_2、CO、SO_2、PM_(2.5)、PM_(10)的质量浓度监测数据进行了统计分析,并就春节期间燃放烟花爆竹及气象因素对空气质量产生的影响利用Pearson分析展开相关研究。结果表明:烟花爆竹集中燃放阶段,O_3的质量浓度日变化基本不受其直接影响、呈单峰型,其他污染因子由双峰型变化为明显的三峰型,PM_(2.5)、PM_(10)污染突出,PM_(10)增加速率高于PM_(2.5),PM_(2.5)/PM_(10)的3个谷值与污染因子的3个峰值相对应;分析气温、相对湿度、风速对CO、PM_(2.5)、PM_(10)的影响均在0.01显著水平上相关,但对于烟花爆竹集中燃放污染水平,气温、相对湿度对其影响不大,风速对其影响较为突出,风向与其有明显的相关性。  相似文献   

16.
地铁是人们出行的重要交通方式,车厢内颗粒物污染可影响人体健康。2016年春、秋、冬季对北京地铁1号、2号、4号、10号线进行现场监测,探讨北京地铁车厢内颗粒物污染特征。研究结果表明,北京地铁车厢内PM_(2.5)平均浓度超标率为83.8%~98.7%,地铁1号线PM_(10)平均浓度超标率为59.6%。地铁车厢内PM_(2.5)和PM_(10)浓度存在工作日和周末组间显著性差异,表明客运量对车厢内颗粒物浓度有较大影响。地铁车厢内PM_(2.5)和PM_(10)浓度存在季节性差异,冬季车厢内颗粒物平均浓度最高。不同线路车厢内PM_(2.5)和PM_(10)浓度存在组间差异,地铁通风空调系统、门系统和客运量是造成其差异的主要原因。  相似文献   

17.
2014年4月22—29日在中国西北地区发生强沙尘天气期间,对银川市大气污染物(PM_(10)、PM_(2.5)、SO_2、NO_2、O_3)进行了监测,并重点分析了PM_(2.5)的化学组成变化特征。结果表明,沙尘天气发生前,PM_(10)、PM_(2.5)、SO_2和NO_2平均小时质量浓度分别为99.33、36.89、25.84、47.21μg/m~3;沙尘天气发生时,PM_(10)、PM_(2.5)、SO_2和NO_2平均小时质量浓度分别为1 121.43、209.19、6.13、18.42μg/m~3:说明此次沙尘传输经过地区大气较为清洁,随沙尘气溶胶传输的NO_2和SO_2较少。沙尘气溶胶由于带有大量的Ca~(2+)、Mg~(2+),使得PM_(2.5)碱性增强,PM_(2.5)中的硫酸盐和硝酸盐存在形式主要为NH_4HSO_4和NH_4NO_3。沙尘气溶胶除了对PM_(2.5)中来源于自然源的无机元素浓度有显著提升外,对于水溶性离子、碳成分等直接或间接来源于人为源的组分浓度也有较大的提升。Ti、Fe、Al、Ca、Si、Sr、Mg、Na、K、Ba、P可以认为基本来源于沙尘矿物粒子。此外,沙尘气溶胶还能促进大气SO_2、NO_2向二次硫酸盐、硝酸盐转化,尤其是硫酸盐。  相似文献   

18.
基于浓度守恒原理建立了一次回风空调系统室内PM_(2.5)浓度模型,研究了过滤器分别安装在新风段、回风段和送风段时过滤效率和新风量的变化对室内PM_(2.5)浓度的影响。模拟结果表明:在室外PM_(2.5)浓度大于室内初始值的条件下,过滤器安装在送风段或回风段时,减少新风有利于室内PM_(2.5)污染控制,过滤器安装在新风段时,根据过滤器效率调节新风,过滤效率小于临界效率,减小新风有利于室内污染控制;在室外PM_(2.5)浓度小于室内初始值的条件下,过滤器安装在送风段或新风段时,增加新风有利于室内PM_(2.5)污染控制,过滤器安装在回风段时,也存在临界效率,过滤效率小于临界值,增加新风有利于室内PM_(2.5)污染控制。  相似文献   

19.
利用快速检测法(TRAKER)实时监测石家庄夏季铺装道路机动车道PM_(2.5)、PM_(10)的背景浓度和在机动车行驶过程中车轮扬起的PM_(2.5)、PM_(10)浓度,分析车速对PM_(2.5)、PM_(10)排放特征的影响,并得到不同类型道路积尘负荷、排放因子和排放强度。结果表明:车轮扬起的PM_(2.5)浓度随车速变化不大,而PM_(10)起伏较大;车速相同时,快速路、主干道、次干道、支路的PM_(2.5)质量浓度分别为0.046、0.110、0.160、0.097mg/m~3,表现为次干道主干道支路快速路,与积尘负荷的强弱顺序一致;不同类型道路排放因子表现为次干道快速路支路主干道,排放强度表现为快速路次干道主干道支路。研究结果可为石家庄道路交通扬尘排放清单的构建以及扬尘的治理提供数据支撑和参考。  相似文献   

20.
机动车行驶过程中车轮转动引起的道路交通扬尘对城市颗粒物具有较大影响。利用DustTrak 8530型颗粒物检测仪结合全球定位系统(GPS),研究了机动车车速对道路交通扬尘排放特征的影响。结果表明:随着车速的加快,由机动车车轮转动引起的PM_(10)、PM_(2.5)浓度以及PM_(2.5)/PM_(10)(质量浓度比,下同)逐渐增大;通过对数据进行拟合,分别得出PM_(10)、PM_(2.5)浓度及PM_(2.5)/PM_(10)与机动车车速之间的函数关系。研究结果为准确构建道路交通扬尘排放清单以及测试道路交通扬尘排放因子和排放量奠定了实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号