首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc is an essential metal for all living organisms. However, so far, little or no attention has been paid to the consequences of zinc deficiency or acclimation to this metal during culturing and testing on toxicity test results. In this study, the cladoceran Ceriodaphnia dubia was acclimated for 10 generations to four zinc concentrations ranging from 0 to 100 microg Zn/l and changes in zinc tolerance were monitored using acute (48 h) and chronic (9 days) assays. C. dubia deprived of zinc and acclimated to 13 microg Zn/l had a lower fitness in comparison with organisms acclimated to 50 and 100 microg Zn/l. In the two lowest versus the two highest acclimation concentrations the 9dEC50 values (on immobility) were 358-387 microg Zn/l versus 486-489 microg Zn/l; the mean number of young per female was 11-18 versus 25-32; and the time to first brood was 4.7-5.0 days versus 4.0-4.3 days. Moreover, the coefficient of variation of all parameters tested was highest in the two lowest acclimation concentrations. The results indicate that culturing test animals in media lacking trace metals such as zinc could give rise to animals that are unnaturally sensitive to those same metals daring toxicity tests.  相似文献   

2.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   

3.
The effect of heavy metal shock loading on biological treatment systems was studied by traditional methods and molecular biological techniques. Two kinds of SBR (sequence batch reactor) operation units, unacclimated and acclimated activated sludge systems, were studied. The addition of special nutrients and powdered activated carbon (PAC) to stimulate heavy metal uptake and recovery were studied. The kinetic constants could be used to describe the effect of the inhibition of substance utilisation. The results showed that heavy metal shock loading had a greater effect on the unacclimated activated sludge system than on the acclimated one. The special nutrients greatly enhanced the uptake of copper, and the PAC improved sludge settling and decreased the turbidity of the effluent. The variation of dominant species and the diversity of the bacterial community were analysed using 16S ribosomal DNA. Compared with the slight change of dominant species during acclimation by copper, there was a great change in the acclimated system shocked by a high concentration of copper. The results confirmed that the acclimation could improve the resistance of microorganisms to heavy metal toxicity.  相似文献   

4.
Ecotoxicity of different commercial surfactants (six anionic, two amphoteric and one nonionic), essential constituents of cleansing hair products (shampoos), as well as ecotoxicity of eight shampoos containing different combinations of these surfactants, were tested in order to evaluate their possible toxic effects on microalgae. Specific objective of this research was to compare the sensitivity of selected freshwater and marine microalgae to these widely used surfactants and well-known pollutants in surface waters. Internationally validated methods (ISO standards) for the determination of toxic effects on the growth of planktonic freshwater green algae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and marine diatoms Skeletonema costatum and Phaeodactylum tricornutum, were used. The obtained results showed that the concentrations of tested surfactants and shampoos, which resulted in 50% growth reduction of planktonic freshwater green algae, when compared to the controls without test substances (EC50), were in the range from 0.32 to 4.4 mg l(-1) for surfactants and from 2.1 to 8.5 mg l(-1) for shampoos expressed as active substance. Marine diatoms were significantly more sensitive to the tested surfactants than freshwater green algae (EC50 0.14-1.7 mg l(-1) for surfactants and 0.35-1.25 mg l(-1) for shampoos). According to the classification on the basis of environmental effects, the obtained results suggested that all tested surfactants can be classified as having toxic effects on freshwater green alga Pseudokirchneriella subcapitata. Some of them indicated that they have a very toxic effect on Scenedesmus subspicatus and marine diatoms Skeletonema costatum and Phaeodactylum tricornutum.  相似文献   

5.
Belgis C  Guido P 《Chemosphere》2003,50(3):365-372
As important members of zooplankton communities worldwide, rotifers are used extensively in ecotoxicological research. Chronic rotifer tests are, however, dependent on live algal food which adds to the complexity, the variability and the costs of these bioassays. To bypass the former problem, experiments have been undertaken with the freshwater rotifer Brachionus calyciflorus, to determine their intrinsic growth rate (r) when fed for 48 h on a mixture of green algae (Raphidocelis subcapitata recently renamed Pseudokirchneriella subcapitata) obtained from algal beads stored for different periods of time, and other inert foods. All tests have been performed in disposable multiwells, in 1 ml cups each inoculated with 1 rotifer freshly hatched from dried cysts. The majority of the growth tests was performed in eight replicates. The investigations revealed that microalgae from algal beads stored for up to one year, in darkness, at 4 degrees C, supplemented with dried blue-green algae (Spirulina) gave satisfactory rotifer reproduction. The intrinsic growth rates of the rotifers, were, however, dependent on the storage time of the algal beads; the highests r's (0.7-0.8) were obtained with algae from beads not older than four months. Growth tests with combinations of P. subcapitata and other inert feeds revealed that the enrichment food Selco used in aquaculture, also gave the same reproductive output as the combination microalgae/Spirulina. A rotifer growth experiment with 18 replicates showed that the variation coefficient is below 20% when the tests comprise eight replicates. This study demonstrated that microalgae from beads, supplemented by other inert food, open the door for a practical and cost-effective short-chronic rotifer test, which is totally independent of the culturing of both the test species and its live food.  相似文献   

6.
The cladoceran Daphnia magna was acclimated for seven generations to cadmium concentrations ranging from 0 (control) to 250 microg/l Cd (corresponding to a free ion activity of 4.60 nM Cd2+). Acute and chronic cadmium tolerance as well as cadmium accumulation were monitored as a function of acclimation time. After two to three generations of acclimation to concentrations ranging from 0.23 to 1.11 nM Cd2+ increases in acute tolerance were maximal (factor 7.2) and significant. Acclimation for seven generations to the same acclimation concentrations did result in an increased chronic cadmium tolerance (21 days EC50 values increased). Organisms acclimated to 1.93 nM Cd2+ were equally or more sensitive than non-acclimated daphnids in acute and chronic toxicity tests. Cadmium contents in D. magna increased significantly as a function of the acclimation concentration. Maximum body burdens of 236+/-30 microg Cd/g dry weight were measured in organisms exposed to 4.60 nM Cd2+, but detoxification mechanisms were only successful up to 82+/-20 microg Cd/g dry weight as this concentration did not cause major decreases in survival and reproduction in chronic toxicity tests. As the potential positive effect of acclimation on cadmium tolerance disappeared with successive acclimation generations and increasing acclimation concentrations, it is concluded that multi-generation acclimation studies are important for the evaluation of the long-term effects of environmental toxicants.  相似文献   

7.
Gregor J  Jancula D  Marsálek B 《Chemosphere》2008,70(10):1873-1878
A growth toxicity assay with mixed cultures of cyanobacteria and algae using in vivo fluorescence is presented. Test organisms (the green alga Pseudokirchneriella subcapitata and the cyanobacterium Aphanothece clathrata) growing alone and in a mixture were exposed to selected chemicals. P. subcapitata featured a higher sensitivity to toxicants in the presence of A. clathrata compared to the single species assay. On the other hand, growth of a cyanobacterium was not affected by the presence or absence of the green alga. The proposed method seems to be suitable for pre-screening studies of toxicants (algistatic agents, herbicides) applied into the aquatic environment and for the assessment of their impact on natural phytoplankton communities.  相似文献   

8.
Bufo arenarum embryos at the end of their embryonic development were acclimated to cadmium (Cd) by means of a 10-day treatment protocol. Embryos were processed for metallothionein (Mt) isolation and Cd and zinc (Zn) contents were measured. The results showed that: (1) the uptake of Cd in the experimental embryos was 7 microg/g embryo (wet weight) representing a bioaccumulation of Cd 255 times higher than in the maintaining medium; (2) a major Mt-like fraction was Cd-induced 7.8 times that in control embryos; two other protein fractions also bound Cd and Zn but were induced by Cd only about 2 and 1.4 times; (3) the Zn concentration was about 44 microg Zn/g embryo (wet weight) and did not change significantly (p>0.01) in the experimental embryos with respect to controls, but in acclimated embryos the essential metal was released from the Mts. The enhanced Mt synthesis and release of Zn from the native Mts are discussed in relation to the acclimation phenomenon.  相似文献   

9.
The effect of zinc ions on activated sludge microbes was investigated. Zinc ions inhibit the degradation and transformation of substances, and acclimation has little effect on the inhibition of ammonia and nitrite transformation. The change of diversity and similarity of the bacterial community acclimated by zinc were analysed by random amplified polymorphism DNA (RAPD). The results showed that DNA sequence diversity was different during different stages of acclimation. The microbial diversity of the zinc loading unit was lower than that of the control unit. There were wide differences in diversity, richness, evenness and similarity between the beginning and the end of acclimation, although the chemical oxygen demand removal rate reached the same value at the end. The RAPD fingerprint revealed that some bacteria disappeared and some zinc-tolerant species survived. The results were instructive for us to control the running of biological treatment systems and to apply corresponding recovery techniques in the period after damage.  相似文献   

10.
Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species.  相似文献   

11.
Chong AM  Wong YS  Tam NF 《Chemosphere》2000,41(1-2):251-257
A series of batch experiments was conducted to compare the ability of 11 microalgal species of the same cell density in removing nickel (Ni) and zinc (Zn) from synthetic wastewater. These included Chlorella vulgaris (commercially available), Chlorella sorokiniana and Scenedesmus quadricauda (isolates from polluted water of Wuhan, China), and eight different isolates from Hong Kong. The Wuhan isolate of Scenedesmus removed most Ni, probably due to its large biomass. Nickel concentration was reduced from an initial 30 to 0.9 mg/l after 5 min (97% Ni removal), and further declined to 0.4 mg/l after 90 min of treatment. In wastewater containing 30 mg/l Ni and 30 mg/l Zn, more than 98%, Ni and Zn were removed simultaneously at the end of 5 min treatment, indicating that the presence of Zn in wastewater did not affect Ni removal by this Scenedesmus isolate. The second most effective species for Ni removal was an isolate, tentatively identified as Chlorella miniata, Ni concentration was reduced to 10 mg/l after 90 min, and was only slightly interfered by the presence of Zn. In terms of metal removal per unit biomass or unit surface area of algal cells, C. miniata was the best species in removing Ni and Zn. At the other extreme, one Hong Kong isolate (Synechocystis sp.) did not remove any Ni and only achieved 40% Zn removal. Performance of the other isolates was comparable with the commercial C. vulgaris, less than 50% Ni was removed after 5 h of treatment and Ni removal was significantly reduced by the presence of Zn. All algae tested were found to be viable, showing these 11 species could tolerate a mixture of 30 mg/l Ni and 30 mg/l Zn in wastewater.  相似文献   

12.
Toxic doses of zinc and cadmium inhibit shoot growth but increase the capacity of several leaf enzymes in dwarf beans (Phaseolus vulgaris L.). Both effects were studied as a function of the metal concentration applied to the plant. There was a linear relationship between the metal content of the primary leaf and the nutrient solution. When leaf metal content exceeded a toxic threshold value, shoot growth became inhibited and an increase in capacity of the following enzymes was measured in the leaf: glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, isocitrate dehydrogenase, malic enzyme, glutamate-oxaloacetate transminase, peroxidase. The threshold values were similar for growth inhibition as well as for enzyme capacity induction. Both effects were strongly correlated to each other, especially under conditions of toxic zinc treatment. Measurement of enzyme capacity might therefore provide a useful criterion for the evaluation of the phytotoxicity of soils, contaminated by zinc and/or cadmium.  相似文献   

13.
Copper compounds have been intentionally introduced into water bodies as aquatic plant herbicides, algicides and molluscicides. Copper-based fertilizers and fungicides have been widely used in agriculture as well. Despite the fact that copper is an essential element for all biota, elevated concentrations of this metal have been shown to affect a variety of aquatic organisms. Nonetheless, comparative studies on the susceptibility of different freshwater species to copper compounds have seldom been performed. This study was conducted to compare toxicity of copper-based pesticides (copper oxychloride, cuprous oxide and copper sulfate) to different freshwater target (Raphidocelis subcapitata, a planktonic alga and Biomphalaria glabrata, a snail) and non-target (Daphnia similis, a planktonic crustacean and Danio rerio, a fish) organisms. Test water parameters were as follows: pH = 7.4 +/- 0.1; hardness 44 +/- 1 mg/l as CaCO3; DO 8-9 mg/l at the beginning and > 4 mg/l at the end; temperature, fish and snails 25 +/- 1 degrees C, Daphnia 20 +/- 2 degrees C, algae 24 +/- 1 degrees C. D. similis (immobilization), 48-h EC50s (95% CLs) ranging from 0.013 (0.011-0.016) to 0.043 (0.033-0.057) mg Cu/l, and R. subcapitata (growth inhibition), 96-h IC50s from 0.071 (0.045-0.099) to 0.137 (0.090-0.174) mg Cu/l, were the most susceptible species. B. glabrata (lethality), 48-h LC50s from 0.179 (0.102-0.270) to 0.854 (0.553-1.457) mg Cu/l, and D. rerio (lethality), 48-h LC50s 0.063 (0.045-0.089), 0.192 (0.133-0.272) and 0.714 (0.494-1.016) mg Cu/l, were less susceptible than Daphnia to copper-based pesticides. Findings from the present study therefore suggest that increased levels of copper in water bodies is likely to adversely affect a variety of aquatic species.  相似文献   

14.
Biosorption of cadmium and copper contaminated water by Scenedesmus abundans   总被引:14,自引:0,他引:14  
Terry PA  Stone W 《Chemosphere》2002,47(3):249-255
Experiments were conducted comparing the individual removals of cadmium and copper from water via biosorption using Scenedesmus abundans, a common green algae, to removal in a multi-component system to determine competitive effects, if any, between the metals. The goal was to characterize the biological treatment of water contaminated with heavy metals using live aquatic species. In addition, experiments were performed to measure cell viability as a function of metal concentration and also to compare metal removal using living species to that using nonliving ones. It was shown that, while both living and nonliving S. abundans removed cadmium and copper from water, living algae significantly outperformed nonliving algae. Further, in characterizing biosorption by three concentrations of live S. abundans, capacity curves were created comparing the metal biosorbed per mass algae to the initial metal concentration in solution. The algae concentration was not a factor in the biosorption of either metal individually, such that the capacity of the algae for the metal increased with decreasing algae concentration. At the lowest algae concentration considered, competitive effects were observed at copper and cadmium concentrations above 4 mg/l each. At the highest algae concentration considered, no competitive effects were observed in the range of cadmium and copper concentrations studied (1-7 mg/l). It was concluded that biological treatment of heavy metal contaminated water is possible and that at adequately high algae concentrations, multi-component metal systems can be remediated to the same level as individual metals.  相似文献   

15.
Glycosylation of bisphenol A by freshwater microalgae   总被引:1,自引:0,他引:1  
The endocrine disruptor bisphenol A (BPA, 4,4'-isopropylidenediphenol) is used to manufacture polycarbonate plastic and epoxy resin linings of food and beverage cans, and the residues from these products are then sometimes discharged into rivers and lakes in waste leachates. However, the fate of BPA in the environment has not yet been thoroughly elucidated. Considering the effect of BPA on aquatic organisms, it is important that we estimate the concentration of BPA and its metabolites in the aquatic environment, but there are few data on the metabolites of BPA. Here, we focused on freshwater microalgae as organisms that contribute to the biodegradation or biotransformation of BPA in aquatic environments. When we added BPA to cultures of eight species of freshwater microalgae, a reduction in the concentration of BPA in the culture medium was observed in all cultures. BPA was metabolized to BPA glycosides by Pseudokirchneriella subcapitata, Scenedesmus acutus, Scenedesmus quadricauda, and Coelastrum reticulatum, and these metabolites were then released into the culture medium. The metabolite from P. subcapitata, S. acutus, and C. reticulatum was identified by FAB-MS and (1)H-NMR as bisphenol A-mono-O-beta-d-glucopyranoside (BPAGlc), and another metabolite, from S. quadricauda, was identified as bisphenol A-mono-O-beta-d-galactopyranoside (BPAGal). These results demonstrate that freshwater microalgae that inhabit universal environments can metabolize BPA to its glycosides. Because BPA glycosides accumulate in plants and algae, and may be digested to BPA by beta-glycosidase in animal intestines, more attention should be given to levels of BPA glycosides in the environment to estimate the ecological impact of discharged BPA.  相似文献   

16.
High-rate biodegradation of 3- and 4-nitroaniline   总被引:5,自引:0,他引:5  
Saupe A 《Chemosphere》1999,39(13):2325-2346
A municipal wastewater biosludge was acclimated to the degradation of 4-nitroaniline (4-NA). The acclimation was achieved by using this compound as the sole source of nitrogen during the degradation of succinate as the sole source of carbon and energy. The acclimated bacteria were able to eliminate and mineralize 4-NA as the sole source of carbon and energy. However, in batch tests, the degradation process was somewhat instable and only occurred at comparatively low rates. A continuously operated miniaturized fixed-bed bioreactor was used in order to increase the degradation rates. It was inoculated with the acclimated bacteria and fed with 4-NA as the sole substrate. The system enabled high bioconversion efficiency, due to the development of a high biomass concentration of up to 5.45 g SS L-1. At input concentrations of 4-NA up to 4.5 mM and a hydraulic retention time of 3.5 hours a high degradation rate of 1.1 mmol 4-NA L-1 h-1 and 90 ... 95% DOC removal were achieved. Partial nitrification, also occurred. After gradual adaptation, the bacteria also degraded 3-NA and 4-NA simultaneously in this system. Additional batch tests showed, that 3-NA can serve as the sole source of carbon, nitrogen and energy.  相似文献   

17.
The chemical speciation of trace metals in natural waters has important implications for their biogeochemical behavior. Trace metals are present in natural waters as dissolved species and associated with colloids and particles. The complexation of one trace metal (Cd and Zn at 200 and 390 microg/l respectively) with a green alga Pseudokirchneriella subcapitata in colloid-free algal culture medium and in presence of colloidal humic substances (HS) is presented. The influence of the nature of colloids was also addressed using three "standard" HS: fulvic acid (FA) and, soil (SHA) and peat humic acids (PHA). The chemical speciation model, MINTEQA2, was used to simulate the influence of pH and standardized culture medium on metal association with humic substances. The model was successfully modified to consider the differences in the metal complexation with fulvic (FA) and humic acids (HA). The deviations of concentrations of metals associated with HS between experimental results and model predictions were within a factor of approximately 2. The results of speciation model highlight the influence of the experimental conditions (pH, EDTA) used for alga bioassay on the behavior of Cd and Zn. The computed speciation suggests working with a pH buffered/EDTA-free mixture to avoid undesirable competition effects. The behavior of Cd and Zn in solution is more strongly influenced by HS than by alga. Metal-HS associations depend on metal and humic substance nature and concentration. Cd is complexed to a higher extent than Zn, in particular at larger HS concentration, and the complexation strength is in the order FA相似文献   

18.
Acute zinc toxicity was assessed for 10 freshwater cladoceran species collected in six different ecosystems across Europe and for two standard laboratory-reared species (Daphnia magna and Ceriodaphnia dubia). The collected organisms belonged to five different genera: Daphnia (subgenus Daphnia and Ctenodaphnia), Ceriodaphnia, Simocephalus, Acroperus and Chydorus. The 48-h EC50 of the field-collected organisms tested in standard laboratory water ranged from 375+/-141 to 4314+/-1513 microg Znl(-1). The laboratory clone of D. magna was less sensitive than the majority of the field-collected species, while our laboratory Ceriodaphnia dubia was the second most sensitive. Considerable inter-species variation was found within the genus of Ceriodaphnia (factor 6) and within the genus Daphnia (factor 8). Among the different (sub)genera tested, Chydorus and Ctenodaphnia were significantly more tolerant than the others (up to a factor 3 difference). A significant positive relationship (r2=0.67, p<0.05) between the mean cladoceran 48-h EC50 and the ambient zinc concentration of the different aquatic systems was demonstrated, suggesting a role of acclimation and/or adaptation. No significant correlation between the acute zinc tolerance and the length of the organisms was found.  相似文献   

19.
In long-term experiments lasting up to 73 days the effect of rather low levels of zinc, copper, lead and cadmium on the growth and metal uptake was studied by investigating four aquatic plant species: Elodea nuttallii, Callitriche plataycarpa, Spirodela polyrhiza and Lemma gibba. Except Elodea, which was already very sensitive to 5 μmol Cu 1?1, no differentiation in growth or mortality could be detected depending on species or elements. There was a clear differentiation between the uptake levels of the heavy metals with regard to the plant species, resulting in a higher heavy metal content in de submerged species in comparison to the floating ones. For zinc, lead and cadmium, an equal ratio was detected between the concentration in the medium and in the plant tissue independent of the plant species. The involvement of roots in element absorption by aquatic plants and the possibility of using aquatic plants as indicators of heavy metal pollution in Dutch waters are discussed.  相似文献   

20.
Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l(-1) Pb, 2.5, 5, 10, 20 and 30 mg (l-1) Zn, or 0.25, 0.50, 1 and 2 mg l(-1) Cu for 14 days, respectively, then tolerance index (TI) and EC50 (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号