首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
随着经济社会的发展,人们对环境质量更加重视,光化学烟雾成为影响城市环境空气质量的重要因素。利用东北地区大连市全年臭氧监测的时间浓度,对臭氧污染的浓度分布特征,时间以及季节变化特征进行了分析。结果表明:臭氧浓度变化受太阳辐射强度和气温的影响明显,呈单峰型变化,臭氧浓度季节变化趋势明显。春、夏季节臭氧浓度较高,秋季臭氧浓度次之,臭氧与大气中的NO、NO2、CO、VOCs等前体物的浓度、太阳辐射的强度以及CO的浓度都有不同程度的相关性。  相似文献   

2.
李夏  李长波  邱峰 《地球与环境》2015,43(3):296-301
根据中国环保部大气环境公报数据显示,截至2013年,中国城市环境空气质量仍然不容乐观。为全面了解辽宁省环境空气质量变化及其影响因素,以沈阳、大连、鞍山、抚顺、锦州5个典型城市的颗粒物监测数据为基础进行分析,主要探讨TSP、PM10、PM2.5及臭氧8小时对城市大气污染的影响。结果表明,5城市TSP、PM10、PM2.5均超过国家环境空气质量二级浓度限值,分别超过0.14~0.44倍、0.57~0.91倍及0.96~1.53倍,臭氧8小时未超过。从季节变化来看,5城市TSP、PM10、PM2.5浓度大体上呈现冬、春季较夏、秋季高的趋势,臭氧8小时浓度值春、夏两季比秋、冬两季高。5个城市大气颗粒物中的Pb、Zn元素含量最高,金属元素主要富集在PM2.5中。除TSP、PM10、PM2.5对城市空气质量造成严重污染外,臭氧8小时浓度对于城市空气质量的影响将逐渐超过细颗粒物,可能成为污染城市空气质量的主要污染物。  相似文献   

3.
分析了广东省2015—2021年的臭氧浓度特征,选取2018—2020年台风相对活跃的夏秋季(7—10月)作为研究时段,研究了广东省臭氧污染与台风之间的关系.结果表明,2015—2021年,广东省臭氧浓度经历了先升后降的变化过程,2019年,广东省臭氧第90百分位数浓度达到了有监测数据以来的最高值,但仍未超过国家二级标准限值.广东省在春季与秋季臭氧超标天数较多,且近年来冬春季臭氧超标情况在加剧,秋季臭氧超标情况有所好转.7—10月,广东省约81%的臭氧污染与周边台风活动有关,在受台风影响的污染天中,有约80%发生在台风距离广东2500 km范围内.深圳与汕尾臭氧污染与台风活动关系最密切,夏秋季,超过9成的污染天与台风活动相关;汕头、珠海、中山、茂名、阳江、江门等沿海城市夏秋季臭氧污染天中超过8成与台风活动相关.内陆城市臭氧污染与台风的关联性相对较小,梅州臭氧污染与台风活动关联最小.与在东南亚、我国海南或广东登陆的台风相比,北上的台风更容易导致广东地区出现臭氧污染.在台风外围下沉气流的影响下,珠三角中部等主要大气污染物排放区域及周边容易出现大范围晴热高温天气;水平风速低,水平扩散条件不利...  相似文献   

4.
利用2015~2019年山东省日照市PM2.5质量浓度和气象要素的小时数据,对日照市PM2.5季节污染特征和日照市海陆风特征进行了分析,并基于HYSPLIT模式计算了5年逐日02:00、08:00、14:00和20:00(BTC)的48h后向轨迹,不仅通过轨迹聚类分析和潜在源区分析探讨了日照市不同季节PM2.5主要传输路径和其轨迹污染特征及其潜在源区分布和贡献,也分析了海陆风对日照市污染物的影响.结果表明:日照市PM2.5呈现冬季最高、夏季最低的分布特征,监测站点颗粒物浓度在偏西北风影响下较高.日照市不同季节主要输送路径存在差异:春季主要受到偏东和偏北方向气流影响;夏季在副热带高压影响下主要受到来自海上的较为清洁的偏东气流影响;秋季主要受到西北和偏东气流影响;冬季主要受西北和偏北气流影响.整体而言,不同季节受偏西至偏南气流影响时,日照市对应的PM2.5浓度较高.日照市海陆风春秋季多,夏冬季少;在海陆风影响下,日照市PM2.5染和臭氧污染呈现不同的分布特征,且在不同PM2.5污染等级下,PM2.5浓度日变化特征也与其在非海陆风日的日变化有所差异.污染潜在源区分析结果表明,日照市最主要的潜在源区位于山东省临沂市、潍坊市、青岛市和江苏省连云港市.  相似文献   

5.
城市臭氧发生发展规律的研究将为城市环境管理提供理论依据。文章利用卫星OMITO3e数据产品,解译和分析了天水市2006~2014年臭氧柱浓度的时空动态信息。结果表明:(1)空间分布呈现东北、西北高,中部、南部低的倒"V"字形;(2)年变化呈单峰曲线,从2006年至2010年为上升期,每年的增长率为3.98%,2010年至2014年为下降期,年均下降率为2.52%;(3)四季变化明显分为两个阶段,前三年为冬季春季夏季秋季;后六年以夏、春季变化为主,冬、秋季为辅,夏季春季冬季秋季。夏、春两季在第二阶段明显升高与当地经济的快速发展有密切的关系;(4)9年间臭氧柱浓度平均值为301.177 DU,最大值为325.829 DU,最小值为279.093 DU,臭氧柱浓度指示的多年空气质量等级为良好。  相似文献   

6.
城市空气污染具有显著的时空分布特征,并受污染来源、气象条件和地理等因素影响。近年来我国已实施一系列环境污染管控,根据南京市2013?—?2016年国控点的大气环境监测数据和同期气象资料,利用多元统计分析探讨了南京市大气污染物的时空变化特征及其与气象要素的关系。结果表明:近3年南京市的污染物以臭氧(O3)和颗粒物(PM2.5、PM10)为主,大气污染物时空分布特征明显。时间上主要表现为季节变化,多数污染物浓度冬高夏低,但臭氧相反;空间上主要为城市功能区差异,工业交通区浓度高于生态公园区和郊区。除了污染源因素,空气污染程度也受气象要素的制约,风速、降水和温度是影响污染物在城市大气中稀释、扩散和转移的重要因子。  相似文献   

7.
根据2016年徐州市区7个自动空气监测子站的臭氧(O_3)与气象要素的连续观测数据,探讨了徐州市区大气中O_3浓度的变化特征及与气象要素的关系。结果表明:2016年徐州市区O_(3-8h)浓度为12~206μg/m~3,年均值为122μg/m~3;O_3浓度呈现夏季春季秋季冬季的季节性变化特征和"单峰型"的日变化特征。O_3浓度与温度呈正相关性,与湿度和气压呈负相关性;当气压1 010 hpa,气温25℃,相对湿度50%时,O_(3-8h)容易出现超标污染。  相似文献   

8.
基于2014~2017年京津冀13座城市的O3-8h数据,分析O3时间变化特征及污染状况.在此基础上,结合同期气象数据研究近地层O3浓度与气象要素的关系.结果表明:2014~2017年京津冀区域O3-8h整体呈上升趋势,增长率为4.50μg/m3.区域内O3污染整体加重,北京、保定O3污染较为严重;2014~2015年O3浓度与超标情况的月变化主要呈单峰型变化,峰值出现在5月;而2016~2017年为不规则双峰型变化,峰值出现在5~6月和9月.与气象因子的相关性表明:气象要素对O3的影响具有明显的季节差异,其中春、夏、秋季气温是影响O3浓度变化的主要因素,而在冬季相对湿度与风速为影响O3浓度变化的主要因素.此外,分析表明北京、天津、石家庄3大城市夏季形成高浓度O3的阈值明显不同.  相似文献   

9.
以2017年全年丰都近地层臭氧质量浓度观测资料为基础,研究其变化规律。探讨同期五大气象要素温度、相对湿度、太阳辐射、风速、云量对臭氧浓度的影响。结果表明:2017年臭氧浓度季节变化趋势比较明显,夏季最高,平均值为115.065μg/m3,冬季最低,平均值为40.391μg/m3;臭氧小时浓度在四季呈现明显的单峰分布;臭氧浓度与温度、太阳辐射量和风速呈正相关,与相对湿度、云量呈负相关。  相似文献   

10.
基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究   总被引:1,自引:0,他引:1  
基于臭氧监测仪(OMI)卫星反演数据,对2005—2018年东南沿海5省区域大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:①在时间变化上,14年间,该区域大气臭氧柱浓度整体呈先上升后下降的趋势,2005—2013年臭氧柱浓度持续升高,最高值为324.52 DU,高值区不断向南部区域扩大;2013—2018年臭氧柱浓度呈下降趋势,最低值为228.27 DU,但在2017、2018年略有上升.②在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在江苏及浙江省北部;低值区集中于福建省南部及广东省大部分地区.③在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,秋季略高于冬季,但差异不明显.④稳定性分析表明:研究区臭氧柱浓度整体呈现中部分散、南北部集聚、差异较显著的分布格局.⑤自然因素中,风向、气温均呈现显著正相关,江淮地区的梅雨季节(降水)及华南地区的台风和暴雨也起到显著作用.⑥人文因素中,臭氧柱浓度与地区生产总值、各产业生产总值及机动车保有量均表现出正相关,其中,臭氧柱浓度与第二产业的相关度最高.另外,臭氧柱浓度与NO_x排放量表现出显著相关性.VOC_s对臭氧柱浓度的影响中,工业源是主控因素,交通源和居民源次之,电厂源对臭氧柱浓度的影响最弱.这进一步说明臭氧浓度的变化受到了诸多因素的综合影响,但气温、NO_x及VOC_s的排放是臭氧浓度变化的主导因素.  相似文献   

11.
根据2014年4月至2015年3月湖南省长沙市城区10个监测点O_3小时浓度监测数据,综合分析了长沙市O_3的时空分布及其与前体物、气象要素相关关系。结果显示:监测期间长沙市城区O_3小时平均浓度为44.47μg/m~3,O_3高值浓度主要集中在5-9月份,季节分布上O_3平均浓度整体呈现出冬季春季秋季夏季的特征。日变化上O_3呈现倒U型分布,一般在15:00、16:00左右达到峰值浓度,日循环可分为4个阶段:即臭氧累积阶段、臭氧抑制阶段、臭氧光化学生成阶段、臭氧的消耗阶段。空间分布上整体呈现出对照点峰值浓度明显大于城市环境评价点,从城区外围站点浓度大于市中心点浓度特征。O_3的前体物CO、NO_2均呈现双峰型分布,其中O_3与CO、NO_2呈现显著的负相关关系;与气压、湿度呈负相关关系,与温度呈正明显相关关系。  相似文献   

12.
北京市秋季大气气溶胶质量浓度谱分布特征的观测研究   总被引:1,自引:1,他引:0  
为了研究不同天气形势和气象要素对不同粒径段的大气气溶胶质量浓度谱分布的影响,2010年秋季在北京市采用空气动力学粒径仪对0.5 ~20 μm的大气颗粒物进行了为期2个月的连续观测.结果表明,在不同天气形势和气团运动下,质量浓度谱分布差异明显.受到西北气流影响,在质量浓度较小的清洁天气,谱分布主要集中在粗粒径段(清洁天气).当天气以静稳为主,颗粒物质量浓度值中等偏高时,粗细粒径气溶胶分布中出现谱值相近的高峰(中等浑浊天气).在受到西南气流主要影响的高质量浓度的观测日中,细粒径气溶胶在谱分布中占主要地位(高浑浊天气).在相同气团影响的天气下,昼夜间质量浓度谱分布的谱型变化趋势一致.清洁天气保持了粗粒径段的单峰分布,中等浑浊和高浑浊天气呈双峰分布.清洁天气细粒径段谱值受光化学反应影响在日间略高于夜间.中等浑浊天气中质量浓度的谱值在夜间受相对湿度和温度变化影响有显著增加.高浑浊天气下,昼夜温湿差别小,谱分布未出现明显变化.  相似文献   

13.
利用2015~2019年历史数据,分析我国臭氧(O3)时间、空间变化特征,结合同期气象数据研究重点区域臭氧污染与气象要素的关系.结果表明:2015~2019年我国O3浓度整体呈上升趋势,全国O3浓度年均值由83.8μg/m3增至92.4μg/m3.O3浓度变化主要呈"双峰型",2017年呈"单峰型".5~9月为O3浓度的高值时段.1~3月、10~11月O3浓度波动比4~9月大.我国O3浓度呈"东高西低"的空间分布特征,高值区主要集中在京津冀地区.O3浓度与日照时数呈正相关,与最高温度呈正相关,与相对湿度呈负相关.气象要素对O3浓度的影响存在地区差异,大部分地区O3浓度与温度的正相关性较强(r>0.5),而青藏地区O3浓度与温度呈负相关(-0.23  相似文献   

14.
采集北京市2014年冬、春、夏、秋4个季节代表月1、4、7、10月的大气细颗粒物PM2.5样品,分析研究了PM2.5质量浓度、化学特征、季节变化和污染成因.同时,采用正交矩阵因子分析法(PMF)对PM2.5进行了来源解析.结果表明,北京市2014年PM2.5年均浓度为87.74μg/m3,是国家环境空气质量标准年均浓度限值的2.5倍.轻、重污染期间,PM2.5浓度较常日分别增加了1.5和3.9倍,其季节变化表现为冬季 >夏季 >秋季 >春季.地壳元素Mg、Al、Fe、Ca、Ti在轻度污染和重度污染期间较常日略有升高,分别是常日浓度的1.1~1.2倍和1.2~1.5倍.污染元素S、Pb、Zn、Cu浓度变化显著,轻度污染和重度污染期间分别是常日浓度的1.3~2.7倍和1.9~5.9倍.S元素是PM2.5中受人为活动影响较为严重的组分,其相应的SO42-年均浓度为13.43μg/m3,在轻度污染和重度污染期间分别是常日浓度的2.7和5.9倍.硫酸盐的形成主要受O3浓度、温度、相对湿度等气象要素的协同影响,较高的O3浓度、较高温度和相对湿度有利于硫酸盐的生成.PM2.5主要来源于机动车排放、燃煤、地面扬尘和工业排放,其贡献率分别为37.6%、30.7%、16.6%和15.1%.  相似文献   

15.
南京城市下垫面变化对夏季臭氧浓度的影响研究   总被引:1,自引:0,他引:1  
利用南京基准地面气象站1951~2010年的气象数据分析南京气象要素的长期变化,利用2007年南京草场门大气污染物监测数据探讨O3同气象要素之间关系并分析气象要素改变对污染的可能影响,结合WRF-CALGRID模式基于2008年7月的情景模拟研究1990年代以后南京城市下垫面变化对气象要素变化的贡献,并分析其对O3浓度的影响.结果显示,南京气温呈现增长趋势,平均风速、大气湿度、日照时数呈现降低趋势.气温与O3浓度呈一定的正相关关系、较小的风速和相对湿度有利于O3的生成.城市下垫面的增加使得南京城区气温增高超过1℃、风速减小0.4m/s、湿度下降0.5g/kg、混合层高度增加100m.气象要素的改变使地面NOx浓度减小,最大减小量超过6×10-9.对O3浓度的影响有增有减,南京市北部、西部增加,增加量超过2×10-9,主要受温度增加、风速减小以及NO的垂直输送影响;主城区的南部、东部O3浓度减小,减少量1×10-9~3×10-9,主要受混合层高度增加的影响.  相似文献   

16.
目的 了解安徽省臭氧时空分布特征及其与气象要素的关系.方法 利用2017—2019年环境空气质量监测的臭氧数据和气象观测数据,并结合后向轨迹模型和潜在源区分析,分别评价安徽省臭氧污染区域分布和气象要素对臭氧浓度的影响,并分析区域传输对安徽省臭氧浓度的影响.结果 2017—2019年安徽省及各市臭氧浓度增长显著,2019年同比2017年增幅为12.2%,第二季度(4、5、6月)和第三季度(7、8、9月)是O3浓度相对较高的时期,且O3污染有"前移后滞"趋势.污染气团主要来自于安徽省内部地区,潜在源分布显示,皖中地区(合肥、安庆、马鞍山等城市)的贡献比例最大,外地源贡献主要来源于江苏省和山东省等.臭氧浓度与温度和太阳总辐射强度呈正相关,与降水量和相对湿度呈负相关,与风速关联性不大.结论 安徽省臭氧污染逐年增加的主要原因是本地排放的加剧,外源输送可能会产生一定影响,加之高温和强太阳辐射的影响,会加剧臭氧污染的程度,并导致重污染.  相似文献   

17.
臭氧污染是制约北京市环境空气质量持续改善的关键因子,气象是导致臭氧浓度超过国家标准的重要因素,探究气象要素与臭氧浓度之间的关系,对有效治理臭氧污染具有重要意义.本文分析了2018—2022年北京市地面臭氧浓度的演变特征,并利用气象要素和臭氧日最大8 h滑动平均浓度(O3-8 h)观测数据,基于广义相加模型和合成少数过采样技术,构建了适用于北京的臭氧非线性回归预测模型,识别了影响北京市O3-8 h浓度日际变化气象因子的重要程度.结果显示:(1)近5年北京市臭氧浓度仍处于高位波动阶段,5—9月是臭氧浓度超标最严重的时期.(2)回归模型对高浓度臭氧具有良好的预测能力,其对北京市5—9月O3-8 h浓度变化的方差解释率为83.3%.(3)基于回归模型发现,日最高气温、风向、紫外辐射强度、相对湿度、风速、地表平均气压与O3-8 h浓度之间均有显著的非线性关系,其中,日最高气温、风向和紫外辐射强度为主导O3-8 h浓度变化的气象要素.在高温、主导风向为偏南风、紫外辐射强度较强的气象条件下,...  相似文献   

18.
北京市冬季气象要素对气溶胶浓度日变化的影响   总被引:10,自引:3,他引:7  
对2004年1月1—15日北京气溶胶浓度与相对湿度、气压、风速、风向等气象要素的平均日变化进行分析,结果表明:北京冬季ρ(PM10)日变化明显,受气象要素的日变化影响. ρ(PM10)与相对湿度和气压呈正相关性;风速对ρ(PM10)的日变化影响明显,09:00—18:00风速和ρ(PM10)变化趋势一致,呈正相关性,其他时间则呈负相关性; 风向对粗、细粒子的数浓度影响不同,细粒子数浓度在偏东风时大,西、西南风时小,而粗粒子则相反;粗、细粒子的数浓度日变化受气象要素的影响程度不同,相对于粗粒子,细粒子数浓度更易受气象要素日变化的影响.   相似文献   

19.
根据2000~2002年南充市区SO2、NO2、TSP浓度的监测数据,运用综合大气质量指数的分析方法,对南充市区的气质量进行分析评价。结果表明:SO2、TSP是南充市区的主要污染物,NO2的污染相对较轻。3种污染物年内浓度变化均为:冬>春>秋>夏;年间浓度变化:SO2为冬>秋>春>夏,NO2、TSP为冬>春>秋>夏,并提出了一些相关的建议。  相似文献   

20.
李婷苑  陈靖扬  龚宇  沈劲 《环境科学》2023,44(7):3695-3704
气象条件是造成臭氧季节变化的重要原因,为了解广东省冬季臭氧污染的气象成因,使用空气质量和气象要素的地面、垂直探测资料和再分析资料,选取了2022年1月3~6日广东省臭氧中度污染过程与2015~2021年秋季(高污染季)进行对比分析.结果表明:(1)污染过程期间超标城市总数为8个,其中1月4日肇庆达中度污染(219μg·m-3);广东省ρ(O3-8h)平均值为123μg·m-3,较历史秋季平均浓度偏高了21%,但臭氧污染影响范围小于历史秋季污染过程.(2)风速偏小、日照时数偏长和局地环流影响下的气流回流效应是此次臭氧污染过程最主要的地面气象条件,气温偏低可能是这次污染过程影响范围偏小的重要原因.(3)垂直探测表明,夜间至早晨的贴地逆温,配合下沉气流偏强、风速偏小,使得上午时段NO2浓度维持较高水平,进一步促使臭氧浓度增量比非污染时段偏高34.2μg·m-3,残留层臭氧下传加剧1月4日臭氧污染.(4)气流轨迹分析显示臭氧存在水平输送和高空地面混合,近地面不同高度潜在源区主要集中在广...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号