首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京市大气中挥发性有机物的组成特征   总被引:34,自引:0,他引:34  
采用预浓缩—GC-MS方法分析了北京市大气中挥发性有机物(VOCs)的组成,共检测出108种,其主要成分是饱和烷烃(33%)、芳香烃(21%)、烯烃(16%)、卤代烷烃(20%)、卤代烯烃(9%)和卤代芳香烃(1%),总VOCs平均质量浓度为(163 7±39 0)μg m3。更重要的是,在检出物中有54种是有毒有害的物质,主要成分是苯系物和卤代烃,其中苯,甲苯,丙烯,1,3-丁二烯,氯乙烯和1,2-二氯乙烷是含量最高的组分。   相似文献   

2.
我国北方典型城市大气中VOCs的组成及分布特征   总被引:13,自引:0,他引:13       下载免费PDF全文
从2008年4月到2009年1月,利用前级浓缩-气相色谱/质谱法,对天津市和沈阳市大气中的挥发性有机物及浓度变化进行了采样研究.共监测了108种VOCs,包括卤代烷烃39种、苯系物16种、烯烃12种、烷烃30种、醛酯11种,在天津市检测到挥发性有机污染物中,醛酯56.9%,卤代烷烃13.4%,烷烃13.1%,苯系物12.9%,烯烃2.5%,卤代烯烃1.1%.沈阳市醛酯49.3%,卤代烷烃17.8%,烷烃11.8%,苯系物10.3%,卤代烯烃7.8%,烯烃2.9%.2市VOCs的含量季节变化都是春秋季节大于冬夏季节,在不同季节不同点位的VOCs的总量的变化趋势几乎一致,并且分析了天津市和沈阳市苯系物和卤代烃的的主要组成成分以及主要来源,苯系物的主要成分包括苯、甲苯、乙苯、二甲苯,苯系物的主要来源是汽车尾气,卤代烷烃的主要成分是二氯甲烷和氯乙烯,主要来自于汽车尾气和石油化工.  相似文献   

3.
对成都市2011—2012年期间大气中的VOCs在不同季节、不同功能区及不同高度的浓度和组成进行了SUMMA钢罐采样法监测与实验室分析,并讨论其臭氧生成潜势.结果表明:采样期间成都市大气中VOCs的季节变化为:秋季(106.0μg·m-3)夏季(74.5μg·m-3)春季(54.1μg·m-3)冬季(45.8μg·m-3).烷烃、酯类、醇类日变化规律呈单峰型,峰值在8:00出现,与交通流量的变化有关;烯烃和芳香烃的日变化规律则呈双峰型.烷烃、烯烃、芳香烃、醇类在不同功能区的浓度顺序为:交通居民混合区工业区风景区,而醛酮类则为:工业区交通居民混合区风景区.在垂直方向上,距地面78 m处TVOCs浓度最高,这可能与当时采样期间大气为逆温层结有关,其中,烷烃、芳香烃为主要组分.不同VOCs的平均臭氧生成潜势(OFP)及其贡献率排序为:芳香烃(75.5%)烯烃(23.8%)烷烃(0.8%);不同功能区的OFP排序为:交通居民混合区工业区风景区.  相似文献   

4.
上海北郊大气挥发性有机物(VOCs)变化特征及来源解析   总被引:1,自引:0,他引:1  
叶露 《装备环境工程》2020,17(6):107-116
2019年1月1日到10月31日期间在上海北部郊区,采用在线气相色谱仪对58种VOCs定量检测,分析了大气VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP),应用因子分析法对VOCs来源进行了解析。结果表明,上海大气总VOCs体积浓度为25.79×10-9,其中烷烃占比63.2%,烯烃占比11.6%,芳香烃占比19.8%,炔烃占比5.4%。总VOCs体积浓度呈现夏季高,秋季低的季节变化特征。大气臭氧生成潜势为76.99×10-9,烷烃贡献率为22.1%,烯烃为37.5%,芳香烃为38.7%,炔烃为1.7%。VOCs特征物比值(V(TVOC)/V(NO_x)和T/B比值)法表明观测点为VOCs控制区,受周边工业区源和交通源影响。大气VOCs主要来源为机动车排放、工厂生产、燃料燃烧、工业溶剂挥发及天然源。  相似文献   

5.
南京北郊大气VOCs变化特征及来源解析   总被引:10,自引:8,他引:2  
安俊琳  朱彬  王红磊  杨辉 《环境科学》2014,35(12):4454-4464
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs浓度变化特征和特征物比值差异展开研究,并应用PCA/APCS受体模型对不同季节VOCs来源进行了解析.结果表明,南京大气总VOCs体积混合比为43.52×10-9,其中烷烃占45.1%、烯烃占25.3%、炔烃占7.3%和芳香烃占22.3%.总VOCs体积混合比呈现夏季高,冬季低的季节变化.VOCs组分中烷烃在冬季最高,烯烃夏季最高,芳香烃春季最高,炔烃冬季最高.特征物比值(VOCs/乙炔)和T/B比值反映出观测点受周边工业区影响较大.VOCs源解析表明,主要来源来自工厂生产、机动车排放、燃料燃烧、生产活动挥发、溶剂使用和自然源.虽然有季节变化,但与工业生产活动相关的来源占大气VOCs 45%~63%,其次为机动车来源占34%~50%.  相似文献   

6.
利用2019年和2020年夏季沈阳市工业区大气挥发性有机物(VOCs)的观测数据,研究沈阳市夏季工业区大气VOCs的组成特征并初步判断其来源,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)法分别估算该地大气VOCs的臭氧生成潜势(OFP)及二次有机气溶胶生成潜势(AFP).结果表明,观测期间沈阳市工业区ρ(总VOCs)平均值为41.66μg·m-3,烷烃、烯烃、芳香烃和乙炔分别占总VOCs浓度的48.50%、 14.08%、 15.37%和22.05%.浓度排名前10的物种累计占总VOCs浓度的69.25%,其中大部分为C2~C5的烷烃,还包括乙炔、乙烯和部分芳香烃.总VOCs整体上呈现出早晚浓度高、中午浓度低的日变化特征,峰值分别出现在06:00和22:00,11:00~16:00处于较低水平.由甲苯/苯(T/B)和异戊烷/正戊烷的比值判断工业区主要受机动车尾气排放、溶剂使用、燃烧源和LPG/NG的影响.工业区大气VOCs的总AFP为41.43×10-2μg·m-3,其中芳香烃的贡献最大;总OFP贡献值为1...  相似文献   

7.
为了深入了解深圳市主要工业行业挥发性有机物VOCs排放组分特征,该研究采用气袋采样-GC/MS分析系统,对6个典型行业企业的VOCs排放进行了测定。结果显示:家具、塑胶和自行车制造行业由于大量喷漆的使用而排放特征相似,芳香烃含量突出(70%);而制鞋行业排放的芳香烃和卤代烃含量均较高(分别占比为41%和55%),与制鞋工艺中所用的胶粘剂中富含苯系物和氯代烃相关;印刷行业排放中由油墨释放的烷烃和芳香烃含量均较高(分别占比为43%和40%);电子行业由于工艺复杂性,烷烃、芳香烃和卤代烃排放量则大致均等。该研究详细量化了家具制造、制鞋和自行车制造行业的VOCs排放源成分谱,共55种VOCs组分,其中包括9种烷烃、7种烯烃、9种芳香烃和30种卤代烃,为环境大气中VOCs来源识别提供了参比信息。进一步对不同行业进行了臭氧生成潜势(OFP)估算,结果表明家具制造业的OFP贡献最为显著(42%),应成为深圳市控制臭氧污染的优先控制行业。  相似文献   

8.
2017年10月在广州南沙对大气中挥发性有机化合物(VOCs)进行了观测,并对其变化特征和臭氧生成潜势进行了分析。结果表明:测得的VOC总平均浓度为37.5 ppb,表现为烷烃苯系物烯烃;烷烃日变化幅度较大,白天出现两个峰值与早晚交通高峰对应;烯烃浓度日变化不明显,与季节变化引起天然源排放的异戊二烯浓度大幅下降有关;芳香烃日间变化幅度较小;测得的大气中烷烃、烯烃和芳香烃对总VOCs的OFP贡献分别为21.9%、28.7%和47.9%。  相似文献   

9.
青藏高原背景站大气VOCs浓度变化特征及来源分析   总被引:3,自引:1,他引:2  
白阳  白志鹏  李伟 《环境科学学报》2016,36(6):2180-2186
采用大气预浓缩与气象色谱/质谱联用法,对2013-09-13到2013-10-14期间在国家大气背景站青海门源站所采集的大气样品进行分析.结果显示,本次研究共检测出38种挥发性有机物(VOCs),其中烷烃16种,烯烃11种,芳香烃9种,卤代烃2种.从组成成分来看,烷烃所占比例最大,达58.6%,烯烃和芳香烃分别占29%和10.5%,卤代烃所占比例最小,仅为1.7%.观测期间大多数VOCs物种呈现白天浓度低、夜晚浓度高的变化趋势,具有明显的高原站点特性,但异戊烷、异戊二烯、甲苯则呈现相反趋势.采用臭氧生成潜势(OFP)对VOCs各组分活性进行分析,各类VOCs中烯烃对OFP贡献最大.利用主成分分析VOCs物种,提取出4个因子,分别归类于燃烧源、天然气和液化石油气的泄露、工业源、生物源.结合HYSPLIT 4.0后向轨迹模型,进一步确定气团的来源与运输途径,发现来自南向的污染源贡献是门源地区VOCs物种浓度增加的主要原因.  相似文献   

10.
北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究   总被引:31,自引:20,他引:11  
挥发性有机物(VOCs)是大气中光化学污染臭氧(O3)的重要前体物,其在大气中的浓度水平往往直接影响着臭氧的污染水平.以2008年夏季北京大气中VOCs浓度观测资料为基础,分析了VOCs浓度和组分随时间的变化特征,比较了各组分对臭氧产生的影响潜势,并利用主成分分析法研究了VOCs主要来源.结果表明,北京大气总VOCs在上午和下午的浓度分别是34.38×10-9(体积分数)和27.13×10-9(体积分数),组分中以烷烃最高,芳烃次之,烯烃最低,下午大气中VOCs浓度显著低于上午,烯烃、芳烃和烷烃依次下降28%、26%和15%;其中1,2,4-三甲苯等效丙烯浓度最高(8.05×10-9C),其次为间对二甲苯(6.97×10-9C)、甲苯(6.41×10-9C)和1,3,5-三甲苯(5.64×10-9C);芳烃对大气O3生成贡献最大(47%),其次是烯烃(40%),烷烃最低(13%).北京大气中VOCs主要来源于机动车(28%)、溶剂挥发(19%)、液化气泄漏(15%)和工业排放(12%).为遏制近年来夏季O污染加重趋势,北京应大力减少VOCs排放,特别是芳香烃的排放量.  相似文献   

11.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

12.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10~(-9),C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10~(-9)]风景区[(21. 7±4. 4)×10~(-9)]交通居民混合区[(20. 8±7. 2)×10~(-9)].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10~(-9)),夏季风景区VOCs浓度最高(21. 5×10~(-9)).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著高于风景区和交通居民混合区.通过T/B(甲苯/苯)探讨VOCs的来源发现,机动车和溶剂使用是城区大气VOCs的主要来源.功能区的OFP排序为工业区交通居民混合区风景区,烯烃对OFP的贡献最高,其次为芳香烃.  相似文献   

13.
重庆市北碚城区大气中VOCs组成特征研究   总被引:11,自引:4,他引:7  
2012年3月~2013年2月,使用特制的不锈钢钢瓶采集重庆市北碚城区大气样品,并采用三步预浓缩-气相色谱/质谱法对所采集的气体样品进行检测.本研究共检出78种挥发性有机物(volatile organic compounds,VOCs),其中烷烃25种,烯烃15种,芳香烃28种,卤代烃10种.结果表明,重庆市北碚大气中年均浓度最高的前7种VOCs分别为:二氯甲烷(3.08×10-9,体积分数,下同)、苯(2.09×10-9)、异戊烷(1.85×10-9)、甲苯(1.51×10-9)、丙烷(1.51×10-9)、间/对-二甲苯(1.43×10-9)、苯乙烯(1.39×10-9).北碚大气中总挥发性有机物(total volatile organic compounds,TVOCs)浓度为33.89×10-9,季节变化表现为:春季(42.57×10-9)>秋季(33.89×10-9)>冬季(31.91×10-9)>夏季(27.04×10-9).从组成来看,烷烃和芳香烃对TVOCs贡献最大,分别达到31.5%和30.7%;其次是卤代烃类,占27.4%;含量最少的组分是烯烃,所占比例仅为10.4%.采用臭氧生成潜势对VOCs组分活性分析结果表明,烯烃类和芳香烃类化合物是对北碚大气O3生成贡献最大的物质.利用主成分分析法对大气样品中VOCs来源进行分析,发现北碚大气VOCs主要源于机动车尾气排放,贡献比为50.41%.北碚大气中T/B年均值为0.73,表明大气中的苯类物质主要来源于机动车的尾气排放,受溶剂挥发的影响较小.  相似文献   

14.
该文以2020年5-10月烟台市117种VOCs监测数据为基础,对烟台市VOCs污染特征、臭氧生成潜势及污染来源进行分析。研究表明:烟台市VOCs平均体积分数为27.70×10~(-9)(75.43μg/m~3),VOCs体积分数月际波动较小,在25.61×10~(-9)~30.54×10~(-9)之间。烟台市VOCs化学组成由高到低排序,依次为烷烃OVOCs卤代烃芳香烃烯烃炔烃有机硫,其中烷烃和OVOCs比重最大,二者之和占总VOCs的68.5%;VOCs体积分数最高的3种组分依次为甲醛、丙烷、丙酮。烟台市VOCs组分的总OFP值为177.41μg/m~3,臭氧生成潜势量表现为OVOCs芳香烃烯烃烷烃炔烃卤代烃有机硫,OFP值排名前3的组分分别是甲醛、乙醛、甲苯。烟台市大气中芳香烃主要受机动车排放影响,同时工业排放影响也不可忽略;羰基化合物主要受机动车尾气和人为源影响。  相似文献   

15.
城市污水处理厂的挥发性恶臭有机物组成及来源   总被引:10,自引:0,他引:10       下载免费PDF全文
采用GDX-502采样管和二次热解吸与GC-MSD联用仪研究广州一个典型城市污水处理厂不同污水处理单元和周边环境空气中挥发性恶臭有机物(MVOC)的组成和含量,通过对源排放特征、分子标志物和大气化学活性分析,建立该污水处理厂的MVOC源成分谱.结果表明,该污水处理厂检出烷烃、卤代烃、烯烃、芳香烃、含氧有机物和硫醚等6类40种挥发性有机物(VOC),其中34种为MVOC成分,各处理单元排放的MVOC含量占其VOC总量的95%以上;苯系物、2-丁酮、乙酸乙酯、乙酸丁酯和甲硫醚等为该污水处理厂重要的MVOC分子标志物,其中苯系物的含量最高,占源排放MVOC总量的75.89%;经归一化和重整的MVOC源成分谱与环境受体点的MVOC组成之间具有显著相关性.  相似文献   

16.
鄂州市大气VOCs污染特征及来源解析   总被引:5,自引:4,他引:1  
2018年3月~2019年2月,在鄂州市主城区采用在线气相色谱仪对102种大气挥发性有机物(VOCs)定量检测,对比分析了VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP).结果表明,鄂州大气VOCs年均体积分数为(30.78±15.89)×10~(-9),总体表现为冬季高夏季低,具体表现为烷烃含氧化合物卤代烃烯烃芳香烃炔烃.日变化规律表现为夜晚体积分数高于白天,且总体上呈"双峰"分布,芳香烃、卤代烃和OVOCs在00:00至02:00出现"第三峰".对VOCs臭氧生成潜势(OFP)贡献较大的是芳香烃和烯烃,贡献率分别为35.45%和29.5%,其中对OFP贡献率最高的物种为乙烯,达到24.217%.分析VOCs特征物种,发现机动车尾气和溶剂使用是鄂州VOCs的主要来源,其中机动车排放是最主要来源,控制鄂州机动车排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成.  相似文献   

17.
利用Synspec GC955-611/811在线气相色谱仪对大连市城区2019年夏季(5~8月)大气中VOCs进行了连续监测,研究了VOCs组分浓度情况和月变化特征。结果表明,烷烃是城区大气中最丰富的VOCs物种,其他依次是芳香烃、炔烃和烯烃。5~7月大连市城区VOCs浓度整体保持稳定,8月份浓度明显升高。利用最大增量反应活性(MIR)计算了各类VOCs的臭氧生成潜势(OFP),各组分对臭氧生成潜势贡献排名分别为烷烃、芳香烃、烯烃和炔烃,分别占比45.8%、29.3%、19.8%和5.1%。关键VOCs活性物种甲苯、异戊烷和正丁烷分别占VOCs总体积浓度的5.6%、10.7%和13.0%。利用PMF受体模型对VOCs的来源进行解析研究,2019年夏季大连市VOCs主要来源来自涂料/溶剂使用(45.1%)、机动车排放(24.0%)、油气挥发(16.1%)、液化石油气(10.7%)、天然源(4.0%)。  相似文献   

18.
2018年8月采集太原市大气样品,分析太原市夏季大气VOCs的污染特征,并利用最大增量反应活性系数法(MIR系数法)估算了VOCs的臭氧生成潜势(OFP).结果表明,太原市夏季大气VOCs浓度为17.36~89.60μg/m3,其中烷烃占比58.01%、芳香烃占比20.06%、烯烃占比16.52%、炔烃占比5.40%.大气VOCs浓度变化表现为明显的早晚双高峰特征,且以早高峰影响为主.OFP分析显示,烷烃、烯烃、芳香烃、炔烃分别占总OFP的19.16%、47.74%、31.75%、1.35%,C3~C5类烯烃是活性较高的物种,对O3生成贡献较大.  相似文献   

19.
北京市医院候诊区空气中VOCs的污染特征   总被引:1,自引:1,他引:0       下载免费PDF全文
对北京市3家医院9个候诊区室内空气进行采样,样品采用预浓缩仪与GC-MS联用系统进行定量分析,共检测出65种挥发性有机物(VOCs).医院室内外VOCs的平均浓度为123.64~713.22μg/m3,其中烷烃、烯烃、芳香烃约占61%~98%.烷烃以乙烷、丙烷、正丁烷、异丁烷、异戊烷为主,占50%以上.烯烃的主要成份为乙烯、丙烯、异戊二烯,约占总烯烃的53%~83%.芳香烃以苯、甲苯、乙苯、二甲苯、苯乙烯为主,约占79%~98%.不同的候诊区芳香烃的组成差异大,病理科候诊区F的芳香烃主要来自二甲苯的贡献(58%±24%),而挂号处G和口腔科候诊区H的甲苯所占芳香烃的比例最大(34%±26%).绝大多数采样点的室内和室外VOCs浓度的比值(I/O)大于1.0,一些候诊区中芳香烃、卤代烃和环烷烃的I/O远大于1.0,表明这些污染物存在一定的室内来源.  相似文献   

20.
2019年对沈阳市大气挥发性有机物(VOCs)开展了为期l a的观测,并对得到的53种物种进行浓度特征以及反应活性的研究.结果表明,观测期间沈阳市VOCs平均浓度为65.33 μg·m-3,烷烃、烯烃和芳香烃质量分数分别为62.44%、16.52%和19.32%.浓度排名前10的物种主要是C3~C5的烷烃、烯烃和部分芳香烃,累计占VOCs总浓度的64.13%.大气中烷烃、烯烃和芳香烃浓度均表现为双峰型的日变化特征,峰值分别出现在06:00~08:00和19:00~20:00,最低点出现在14:00~15:00;月变化上,该地ρ(VOCs)分别在12月和5月达到最高值(136.44μg.m-3)和最低值(35.61 μg·m-3);VOCs表现出明显的季节变化特征,即冬季>秋季>夏季>春季,且烷烃、烯烃和芳香烃均随季节表现出增加趋势.通过特征值甲苯/苯(T/B)研究发现,沈阳春季VOCs主要来源于交通源和采暖源,夏季主要来源机动车尾气以及溶剂挥发,秋冬季主要受生物质燃烧和煤燃烧等排放源的影响.通过对反应活性分析,燃烧源是沈阳市控制臭氧污染的关键,丙烯、乙烯和1-己烯是沈阳市大气VOCs中反应活性最高的物种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号