首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
饮用水中溴酸盐的去除技术   总被引:2,自引:0,他引:2  
臭氧在饮用水处理中得到了广泛的应用,但当水源中含有溴离子时,臭氧深度处理过程中会产生2B级潜在致癌物溴酸盐。我国新的《生活饮用水卫生标准》规定溴酸盐浓度为10μg/L。溴酸盐在水中是极易溶解,具有高度稳定性,溴酸盐一旦形成,就很难用传统的处理技术去除。综述了目前去除溴酸盐技术的最新研究进展及其优缺点,主要包括活性炭吸附去除法、离子交换法、亚铁离子还原去除法、零价铁还原去除法、紫外线照射法等去除技术。现有的去除技术大部分处于实验阶段,在实际应用中存在一定的局限性,因此需要进一步的实验研究,以便有效的应用于工程实践。  相似文献   

2.
为合理评估应用臭氧生物活性炭工艺中溴酸盐的生成情况,提出既能保证出水水质又能降低溴酸盐超标风险的方案.进行了小试与中试试验,系统地从原水水质和工艺参数两个方面入手,研究水质因素、初始溴离子浓度和臭氧氧化条件等对溴酸盐生成的影响,同时分析生物活性炭对溴酸盐的去除能力.结果表明:高初始溴离子浓度水平和臭氧接触程度(Ct值)促使更多BrOx-生成.在相同Ct值条件下,升高臭氧投加浓度可使溴酸盐生成量增高200%左右.以长江南京段江心洲夹江下游原水进行臭氧生物活性炭深度处理不会产生溴酸盐超标风险.生物活性炭(BAC)对于溴酸盐去除效果并不明显.运用臭氧生物活性炭工艺进行深度处理时,工艺中应着重注意控制溴酸盐在臭氧化过程中的生成而非依靠后续生物活性炭将其去除.  相似文献   

3.
饮用水中溴酸盐控制方法和去除技术研究进展   总被引:1,自引:0,他引:1  
溴酸盐是一种潜在致癌物,通常产生于含溴离子水源水的臭氧消毒过程中,我国和世界卫生组织饮用水标准中规定溴酸盐的最高浓度为10μg/L。重点综述了近7年来溴酸盐生成的控制方法(如优化臭氧投加量、降低溶液pH值、加氨等)以及溴酸盐离子去除技术(如吸附法、还原法、离子交换法、生物法等)的研究进展,并对各种技术的优缺点进行了评述。  相似文献   

4.
综合探讨了低温等离子体与光催化耦合这一新兴技术净化空气污染物的机理,讨论了影响耦合净化功能的主要因素以及臭氧的去除方法,介绍了该技术在去除挥发性有机物、氮氧化物、除菌等方面的研究现状,提出了其今后的研究方向。  相似文献   

5.
臭氧氧化被广泛应用于水处理领域,然而臭氧氧化会造成溴酸盐的生成,同时会增加水中醛酮类物质,在后续消毒环节存在消毒副产物三氯乙醛(CH)升高的风险。文章采用亚硫酸氢钠(BS)活化高锰酸钾(PM)技术控制臭氧氧化副产物,考察了预氧化技术对溴酸盐和CH生成潜能的影响。同时为了探究能否在控制副产物的同时保障对污染物的去除,考察了预氧化技术对阿特拉津(ATR)的去除效果。结果表明,2 mg/L的PM或者2 mg/L PM+5 mg/L BS预处理使ATR去除率降低,而1 mg/L PM+5 mg/L BS预处理则强化了ATR的去除。1 mg/L的PM预氧化增加了溴酸盐和CH生成量,其他剂量影响较小。而随着PM剂量的增加,PM+BS对溴酸盐和CH生成潜能的控制效果加强。在1 mg/L的PM剂量下,PM+BS可以在保障ATR有效去除的同时控制溴酸盐和CH生成潜能,是有效控制臭氧氧化副产物的方法。  相似文献   

6.
抗生素作为药用,在国内外应用广泛。但是由于抗生素本身物理化学性质,具有难去除、危害大等特点,造成严重的生态环境与人体健康问题。而由于目前能源紧张问题,越来越多的研究人员将目光投向光催化技术,由于光催化反应速率高,降解抗生素种类多等优势,被用于处理抗生素废水有着良好前景。本文对国内外常用光催化技术降解抗生素进行阐述,对比分析其优缺点,展望了光催化技术应用于处理抗生素废水的应用前景。  相似文献   

7.
溴离子和溴酸盐活性炭竞争吸附及溴酸盐生成影响   总被引:3,自引:0,他引:3  
采用3种活性炭对水体中溴离子和溴酸盐的吸附去除规律进行了考察.结果表明,单吸附条件下溴离子和溴酸盐的吸附去除效率分别达到69%和88%以上,双吸附质条件时溴离子去除率减少到10%.溴酸盐去除率为60%以上;有机物与溴酸盐之间存在竞争吸附关系,AC-400的孔径分布条件更适合于有机物的吸附过程.而不利于溴酸盐的吸附,在低浓度平衡溶液条件下(ce<72 mg·L-1),AC-100对有机物的吸附能力较高,在溶液平衡浓度72mg·L-1<ce<211 mg·L-1条件时,AC-150对有机物的吸附能力较强,影响程度取决于活性炭比表面积和粒度分布等因素;溴酸盐的去除效率同时受到水体中氨含量和pH的影响,氨含量超过200μg/L以上溴酸盐减少量变化不显著,较低pH值溴酸盐生成量较少.  相似文献   

8.
氮氧化物(NO_x)是形成臭氧和二次气溶胶的重要前体物之一,开发高效的NO_x控制技术对我国大气污染防治具有重要意义。光催化技术作为一种新型的高级氧化技术,对环境浓度水平的空气污染物具有良好的去除效果,是当前研究的热点。本文总结了近年来光催化材料对污染物NO_x催化降解的研究进展,包括:(1)讨论了NO_x光催化氧化去除机理;(2)详细综述了提高光催化材料性能的三大主要措施:增强催化剂的光吸收效率,提升载流子分离和迁移效率以及构筑表面活性位;(3)阐述了半导体光催化技术在净化空气方面的应用,并指出光催化技术在去除NO_x方面的发展前景。  相似文献   

9.
本研究以南方某含溴水源为原水,利用饮用水常规工艺及臭氧-活性炭深度处理中试连续实验,评价臭氧氧化过程中溴酸盐生成情况,并考察了氨氮、过氧化氢(H_2O_2)对溴酸盐控制效果及对三卤甲烷生成势(THMFP)的去除影响.结果表明,在不同水质条件下,臭氧消耗量为1.0 mg·L~(-1)以上时,溴酸盐的生成量超过标准(10.00μg·L~(-1)).利用氨氮和H_2O_2投加均能有效控制溴酸盐生成量,且随投加量增大,溴酸盐生成量逐渐降低,氨氮投加0.10~0.30 mg·L~(-1)或m(H_2O_2)/m(O3)(质量比)为0.2~1.0时,能够将溴酸盐控制在标准以内.当氨氮-H_2O_2联合控制溴酸盐时,溴酸盐生成量随m(H_2O_2)/m(O3)先升高后降低.在利用氨氮和H_2O_2投加进行溴酸盐控制过程中,氨氮对THMFP的去除效率影响并不显著,而投加H_2O_2使得THMFP去除效能有所降低.  相似文献   

10.
光催化去除有害藻类的研究进展   总被引:1,自引:0,他引:1  
水体富营养化及有害藻类水华严重威胁着水体生态环境和人类健康,如何有效防治藻类水华成为研究者面临的重大环境问题之一。光催化技术具有效率高、成本低、环境友好等特点,有望成为未来高新技术的新希望。文章阐述了光催化技术的原理及该技术应用于去除水华藻类的优势。综述了近年来TiO2和改性TiO2等几类催化剂应用于光催化除藻的研究进展,并分析和总结了光催化除藻技术的影响因素和一般性规律,指出了光催化除藻存在的问题和发展前景,为光催化技术应用于防治有害藻类水华的研究与实践提供理论依据。  相似文献   

11.
含溴水源水臭氧处理时溴酸盐的产生与控制   总被引:2,自引:0,他引:2  
针对南方某含溴水库水(溴离子浓度15~38μg·L-1),利用连续运行实验装置研究了臭氧氧化时溴酸盐的产生条件,同时初步考察了后续生物活性炭(BAC)对溴酸盐的去除效果.研究结果表明,单独采用预臭氧方式时,在臭氧消耗量控制为2.0mg·L-1以内的条件下,溴酸离子浓度低于6 μg·L-1;而采用预臭氧与后臭氧联合处理时,在总臭氧消耗量为2.0mg·L-1的条件下,出现了溴酸离子超标(10μg·L-1)情况.长期运行结果表明,尽管新炭对溴酸离子没有去除效果,但系统连续运行3个月后,BAC上的微生物对溴酸盐具有一定的去除能力.  相似文献   

12.
二氧化钛光催化消毒是一种新型的水处理技术,可以有效地去除水中常规的和新出现的致病微生物,杀菌效果好且相对常规消毒手段消毒副产物较少,处理工艺自身不会对处理水造成二次污染。通过总结光催化技术的研究历史,阐述了光催化氧化机理和杀灭微生物的具体过程,综述了二氧化钛光催化技术在水处理领域中杀灭细菌、真菌、藻类、原生动物和病毒的研究成果,论述了二氧化钛光催化消毒的必要性,并对二氧化钛光催化消毒的应用前景作了展望。  相似文献   

13.
紫外消毒是污水处理常用技术.紫外线仅能破坏微生物的遗传物质,阻断其繁殖,并不能彻底杀死微生物,一旦停止紫外光照射,微生物可在修复酶的作用下恢复活性.光催化过程能产生强氧化性·OH,破坏细胞壁和细胞膜,彻底杀死微生物.为考察光催化技术消毒效率、抑制复活性能及应用潜力,在市售紫外消毒器中安装了光催化组件,搭建了连续流动式光催化消毒器.以大肠杆菌(E.coli)和噬菌体为目标物评价其消毒能力.紫外剂量50 m J·cm-2条件下,初始浓度3.40×106CFU·m L-1的E.coli原水流经紫外消毒器后被去除4.12 log10的E.coli,而流经光催化消毒器后去除4.79 log10.同时光催化处理后E.coli的光复活率仅为紫外消毒后的17%.连续运行40 h的灭菌能力稳定.光催化设备对噬菌体F2和噬菌体MS2的去除率分别为6.37 log10和6.00 log10,表明该设备也具有病毒去除能力.  相似文献   

14.
张弛  周心怡  李轶 《环境工程》2021,39(12):153-158
光催化技术作为一种新兴的高效可持续技术,在环境领域具有广泛的应用前景。然而,多数光催化材料在失去外界光源的能量供应后,短时间内不再产生电子空穴对,从而迅速丧失催化反应活性。但光催化记忆材料具有独特的催化记忆效应,即在黑暗条件下仍可表现出一定的催化活性,进而克服了以上难题。主要概述了光催化记忆材料的基本工作原理,将现有的光催化记忆材料归类,并总结了光催化记忆材料在环境领域的主要应用方向,包括新能源的生产、难降解有机污染物的氧化去除、重金属污染物的还原去除及病原微生物的灭活,最后展望了光催化记忆材料的发展前景。  相似文献   

15.
由于光催化氧化技术具有效率高、无二次污染、无毒等优点,其是环境科学与技术领域的热点研究方向之一,但多年一直处于研究试验阶段,其在工程应用中非常罕见。如何将光催化氧化技术应用到环境污染治理工程中是该领域研究重点及难点。纳米光催化材料被称为环境友好材料,该文主要介绍了光催化氧化技术的发展史、纳米光催化材料特点、其在环境污染治理中的研究进展,最后分析该研究领域存在的问题并提出前景方向。  相似文献   

16.
微污染原水预臭氧化-强化混凝处理及其安全性   总被引:3,自引:1,他引:2  
以强化混凝和臭氧氧化技术为核心建立了中试水处理设备,采用有机物表观分子量分级、树脂分级等手段表征了原水有机物及其THMFP特征;通过实验室试验和中试运行对预臭氧和强化混凝技术应用中有机物去除效果、消毒副产物THM的产生和消除进行了研究;研究了臭氧应用中可能形成的相关副产物甲醛、溴酸盐等对饮用水安全性影响的问题.结果表明:预臭氧-强化混凝处理效果较好,采用适当浓度的臭氧(如1.0mg·L-1)进行预氧化,可以有效提高有机物去除率,从常规混凝滤后水的33.7%提高到48%,有机物浓度降到1.385mg·L-1;THMFP总体去除效果从常规处理的131μg·L-1降至53μg·L-1;未出现甲醛、溴酸盐超标的问题,对余铝没有显著影响,安全性较高;但是,AOC含量比常规混凝和强化常规混凝升高,可能增进微生物的繁殖和对管网等的腐蚀,需要进一步控制.  相似文献   

17.
新型有机污染物的污染现状及其去除技术近年来受到学界的广泛关注。由于传统污水处理厂不能有效去除新型有机污染物,导致其随污水处理厂出水、污泥等进入生态环境,产生危害。因此,为有效去除该类污染物,近年来新型有机污染物的去除技术逐渐成为研究热点。通过总结新型有机污染物的污染现状及其危害,对目前新型处理技术,包括活化过硫酸盐、光催化耦合微生物同步降解、臭氧微气泡法、金属-有机框架材料、固定化微生物和漆酶降解等技术进行了综述,并分析了各种技术的优势和缺点。结果表明:目前对这些新型工艺降解新型有机污染物的研究大多处于实验室研究阶段,且多为单一工艺研究,部分工艺存在有毒有害产物。建议通过建立数学模型,使其在预测工艺降解能力、评估污染物毒性及其环境风险、污染程度等方面更加简便、经济。同时应进一步筛选高效菌株,研发安全可靠的新型处理材料,通过清洁生产,从根源上消除新型污染物污染。  相似文献   

18.
针对溴酸盐(BrO-3)污染,本研究以三聚氰胺为前驱体制备石墨相氮化碳(g-C3N4)为自由基诱导催化材料.通过XRD、TEM、UV/Vis-DRS对其物相组成和光催化性能进行表征发现,制备的层状g-C3N4有稳定片层结构及可见光响应的禁带宽度(~2.70 e V).可见光照射下,g-C3N4表面产生的光生载流子不能直接还原溴酸盐.然而,若有有机小分子(如甲醇)存在,光催化还原效率迅速增大.通过原位电子顺磁共振谱(EPR)及对材料表面的光电化学测试分析,我们探索了该体系的光催化还原Br O-3的机制.结果表明,g-C3N4带隙较窄其空穴氧化能力较弱,在光催化过程中空穴只能将甲醇分子转化为CH3O·自由基,因而甲醇分子的存在提升了光生载流子的分离效率,加剧了自由基的累积.该自由基具有较高的还原活性,可迅速将水相中的溴酸根还原至溴离子.  相似文献   

19.
光催化氧化技术具有操作简单、反应条件温和、清洁无二次污染等优点,已被广泛应用于各类污染物的去除.但是,低电荷载流子迁移率和电子空穴对的快速复合是限制光催化效率的关键问题.尽管通过掺杂、复合等方法能改善光催化氧化性能,但是在光催化材料的电子空穴对的分离效率仍然不高.为了解决这个问题,近年来越来越多的研究将极化电场的理论引...  相似文献   

20.
X7 200501525 光催化功能陶瓷及其光降解特性/刘平…(福州大学光催化研究所)//环境科学/中科院生态环境研究中心.-2004,25(4).-109-112 环图X-5 本研究制备了表面镀有光催化剂薄膜的光催化陶瓷,并利用XRD、色谱、原位红外光谱和分光光度计等研究了其光催化降解油酸、乙烯、SO2、NOx和灭菌的特性。结果表明,通过控制制备条件得到的光催化陶瓷具有较强的降解有机污染物、去除无机有害气体和灭菌等功能,光催化功能陶瓷对乙烯、油酸、SO2和NOx的降解率达到95%, -100%。图5参10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号