首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
When an explosion occurs in a tunnel, the study of the blast wave quickly becomes complicated, owing to the multiple propagation patterns of the blast wave (incident wave, regular and Mach reflections) and to the geometrical conditions. Considering this problem, two patterns can be revealed. Near the explosive, the well-known free-field pressure wave can be observed. After multiple reflections on the tunnel's walls, this overpressure behaves like a one-dimensional (1D) wave. One aim of this paper is to determine the position of this transition spherical-to-planar wave propagation in a tunnel using both numerical and reduced-scale experiments, and thereby validate the dedicated law established in a previous work.For this purpose, a detonation of TNT in a tunnel with a cross-section of up to 55 m2 is considered. Results show good agreement between the numerical simulations and experiments. The transition zone between the three-dimensional (3D) and the 1D wave is well detected. An application to a simplified subway station is also investigated which shows that significant planar waves can be transmitted to the neighboring stations via the junction tunnels.  相似文献   

2.
爆炸冲击波在多级穿廊结构坑道内传播规律的数值分析   总被引:1,自引:0,他引:1  
数值模型尺寸参照总参工程兵科研三所所建的穿廊结构坑道实体模型,采用ANSYS/LS-DYNA建立三维穿廊端部不同开闭的数值模型,得出冲击波在多级穿廊结构坑道内的传播规律,并与长直坑道内爆炸冲击波传播规律进行对比分析。结果表明多级穿廊结构端部开放坑道对爆炸冲击波的削弱作用非常显著,一级穿廊结构削弱冲击波强度62%,级数越高,削弱效果越明显;端部封堵时冲击波反射效果明显。  相似文献   

3.
Explosions will, in most cases, generate blast waves. While simple models (e.g., Multi Energy Method) are useful for simple explosion geometries, most practical explosions are far from trivial and require detailed analyses. For a reliable estimate of the blast from a gas explosion it is necessary to know the explosion strength. The source explosion may not be symmetric; the pressure waves will be reflected or deflected when hitting objects, or even worse, the blast waves may propagate inside buildings or tunnels with a very low rate of decay. The use of computational fluid dynamics (CFD) explosion models for near and far field blast wave predictions has many advantages. These include more precise estimates of the energy and resulting pressure of the blast wave, as well as the ability to evaluate non-symmetrical effects caused by realistic geometries, gas cloud variations and ignition locations. This is essential when evaluating the likelihood of a given leak source as cause of an explosion or equally when evaluating the potential risk associated with a given leak source for a consequence analysis.In addition, unlike simple methods, CFD explosion models can also evaluate detailed dynamic effects in the near and far field, which include time dependent pressure loads as well as reflection and focusing of the blast waves. This is particularly valuable when assessing actual near-field blast damage during an explosion investigation or potential near-field damage during a risk analysis for a facility. One main challenge in applying CFD, however, is that these models require more information about the actual facility, including geometry details and process information. Collecting the necessary geometry and process data may be quite time consuming. This paper will show some blast prediction validation examples for the CFD model FLACS. It will also provide examples of how directional effects or interaction with objects can significantly influence the dynamics of the blast wave. Finally, the challenge of obtaining useful predictions with insufficient details regarding the geometry will also be addressed.  相似文献   

4.
This paper aims at contributing to the efficient design of explosion protection systems against confined explosions. The issue addressed concerns the quantitative estimation of the protective effect of explosion relief vents in the case of confined explosions inside tunnels. A series of virtual experiments performed by computer simulation, revealed how the number of vents, their diameter, as well as the angle between the vents and the tunnel, influences the blast wave attenuation. The computational study was performed considering a complicated large-scale tunnel configuration with branches on its half portion. The purpose was the calculation of the attenuation effect due to the presence of vents by comparing the total explosion-specific impulse developing at antidiametric positions inside the tunnel. Simulations were carried out via a three-dimensional numerical model built in the computational fluid dynamics code CFX 5.7.1, which has been validated in previous papers against experimental overpressure histories data demonstrating reasonable performance. Computer results showed that the use of branch vents provides an effective method for shock wave attenuation following an explosion, whereas their statistical elaboration revealed that the attenuation is mainly affected by the number of vents and their diameter. In contrast, the angle between the side vents and the main tunnel appeared to slightly affect the pressure wave weakening. Eventually, the quantitative influence of the above parameters was effectively illustrated in functional diagrams, so that the total attenuation effect may be promptly estimated, if the design variables are known. In addition, two statistical models with reasonable fitting to the calculated data are proposed, which express the attenuation effect as a dependent variable of the design variables including their interactions.  相似文献   

5.
So far, the prediction of blast wave generated from the Boiling Liquid Expanding Vapour Explosion (BLEVE) has been already broadly investigated. However, only a few validations of these blast wave prediction models have been made, and some well-established methods are available to predict BLEVE overpressure in the open space only. This paper presents numerical study on the estimation of the near-field and far-field blast waves from BLEVEs. The scale effect is taken into account by conducting two different scale BLEVE simulations. The expansion of pressurized vapour and evaporation of liquid in BLEVE are both modelled by using CFD method. Two approaches are proposed to determine the initial pressure of BLEVE source. The vapour evaporation and liquid flashing are simulated separately in these two approaches. Satisfactory agreement between the CFD simulation results and experimental data is achieved. With the validated CFD model, the results predicted by the proposed approaches can be used to predict explosion loads for better assessment of explosion effects on structures.  相似文献   

6.
A laneway support system provides an available way to solve problems related to ground movements in underground coal mines, but also poses another potential hazard. Once a methane/air explosion occurs in a laneway, inappropriate design parameters of the support system, especially the support spacing, likely have a negative influence on explosion disaster effects. The commercial software package AutoReaGas, a computational fluid dynamics code suitable for gas explosions, was used to carry out the numerical investigation for the methane/air explosion and blast process in a straight laneway with different support spacing. The validity of the numerical method was verified by the methane/air explosion experiment in a steel tube. Laneway supports can promote the development of turbulence and explosion, and also inhibit the propagation of flame and shock wave. For the design parameters in actual laneway projects, the fluid dynamic drag due to the laneway support plays a predominant role in a methane/air explosion. There is an uneven distribution of the peak overpressure on the same cross section in the laneway, and the largest overpressure is near the laneway walls. Different support spacing can cause obvious differences for the distributions of the shock wave overpressure and impulse. Under comparable conditions, the greater destructive effects of explosion shock wave are seen for the laneway support system with larger spacing. The results presented in this work provide a theoretical basis for the optimized design of the support system in coal laneways and the related safety assessments.  相似文献   

7.
局部扰动对主坑道爆炸波发展的数值模拟与实验研究   总被引:6,自引:1,他引:5  
在地下建筑物,如隧道、地下储油库、人防工程、地下物资仓库等里面,由主通道旁结分支通道是最常见的一种布置形式,是一种典型的复杂受限空间结构.一旦有可燃气体发生爆炸燃烧,爆炸压力波和火焰的传播将受众多因素的影响,其中局部扰动的影响是主要因素之一.本文通过实验和数值模拟的方法研究了油气混合物在该复杂受限空间中由弱点火引起爆炸燃烧的发展过程,湍流强度经旁接分支坑道后在主通道中的变化,以及爆炸压力波和火焰经局部扰动后的变化过程;并将数值模拟结果与实验结果进行了对比和综合分析,得到了与地下受限空间安全相关的重要结论.湍流强度是复杂受限空间中可燃气体爆炸燃烧发展过程的主要影响因素之一,局部扰动将增强爆炸流场的湍流强度,加速燃烧化学反应,能量的释放量和速率大大提高.这些能量的快速加入促进了高峰值压力波的形成,火焰也被加速,爆炸从此由弱转强,出现跃升.研究结果对地下受限空间爆炸过程的进一步研究以及爆炸灾害的预防都有参考价值.  相似文献   

8.
The purpose of the research was to improve prediction of response of buildings to blast waves by including the negative phase and considering clearing of both positive and negative phases. Commonly used structural design practices, which trace their origins to military design manuals, often ignore the negative phase as well as positive phase clearing. For high explosive threats, this approach is conservative in most circumstances. However, negative phase clearing had not previously been studied for blast waves, and the implications for structural response had not been evaluated. This paper presents results of modeling negative phase blast clearing behavior for a typical blast wave and discusses the differences from positive phase clearing. The implications of including positive and negative phase clearing in building blast damage analysis are also investigated through single-degree-of-freedom (SDOF) analyses.Blast waves from explosion sources like a vapor cloud explosion (VCE), pressure vessel burst or high explosive exhibit both positive and negative phases, and the relative magnitude of the positive and negative phases varies among explosion sources and the specific circumstances of each source. A fully reflected blast wave is produced if an incident blast wave were to strike an infinitely tall and wide wall in a normal orientation. Both the positive and negative phases of the blast wave are enhanced by the reflection process. However, when an incident blast wave strikes a wall of finite size in a normal orientation, rarefaction waves are created at the edges of the wall, and the rarefactions sweep down from the roof and inward from sides. The rarefaction waves result in a clearing effect for both the positive and negative phases.Clearing relieves some of the applied blast load on the reflected wall for the positive phase. However, this is not always the case for the negative phase. As shown by the results presented in this paper, clearing may either relieve or enhance the applied negative phase blast load, depending on the duration of the blast wave and the wall dimensions.The impact of negative phase clearing on structural response for generic building components was also investigated. Nonlinear SDOF methods were used to characterize response in terms of peak positive and negative displacements. It was found that the influence of the negative phase is significant and the peak structural response can occur during negative (outward) displacement.  相似文献   

9.
When the explosion of condensed materials occurs in square or circular cross-section tunnel, the subsequent blast wave reveals two patterns: three-dimensional close to the explosive charge and one-dimensional far from the explosion. Pressure decays for these two patterns have been thoroughly studied. However, when the explosion occurs in rectangular cross-section tunnel, which is the most regular geometry for underground networks, the blast wave exhibits a third, two-dimensional, patterns. In order to assess the range of these three patterns, several numerical simulation of blast waves were carried out varying the width and the height of the rectangular cross-section as well as the mass of the charge. Laws are presented to localize the transition zones between the 3D and the 2D patterns, and between the 2D and the 1D patterns, as functions of non-dimensional width and height. The numerical results of the overpressure are compared to existing 3D and 1D laws. An overpressure decay law is proposed to represent the 2D pattern. Knowing the two transition zones and the overpressure decays within these zones, an algorithm is presented to efficiently predict an overpressure map. This algorithm is validated by comparison with experimental data.  相似文献   

10.
Explosion experiments using premixed gas in a duct have become a significant method of investigating methane-air explosions in underground coal mines. The duct sizes are far less than that of an actual mine gallery. Whether the experimental results in a duct are applicable to analyze a methane-air explosion in a practical mine gallery needed to be investigated. This issue involves the effects of scale on a gas explosion and its shockwave in a constrained space. The commercial software package AutoReaGas, a finite element computational fluid dynamics (CFD) code suitable for gas explosions and blast problems, was used to carry out the numerical simulation for the explosion processes of a methane-air mixture in the gallery (or duct) at various scales. Based on the numerical simulation and its analysis, the effect of scale on the degree of correlation with the real situation was studied for a methane-air explosion and its shockwave in a square section gallery (or duct). This study shows that the explosion process of the methane-air mixture relates to the scales of the gallery or duct. The effect of scale decreases gradually with the distance from the space containing the methane-air mixture and the air shock wave propagation conforms approximately to the geometric similarity law in the far field where the scaled distance (ratio of the propagation distance and the height (or width) of the gallery section) is over 80.  相似文献   

11.
矿井瓦斯爆炸传播的尺寸效应研究   总被引:24,自引:7,他引:17  
基于瓦斯爆炸传播过程的理论分析 ,确定了表征瓦斯爆炸传播过程的主要物理参数 ;通过在两条巷道中进行了瓦斯爆炸传播的对比实验 ,指出了瓦斯爆炸传播过程的尺寸效应存在的原因。笔者认为 :因为巷道支护设备使巷道有效面积的减少和壁面粗糙度的变化 ,尺寸效应使大断面巷道在可比条件下 ,发生瓦斯爆炸时 ,爆炸波的火焰、压力、冲量等在更大范围内形成破坏和伤害  相似文献   

12.
API Recommended Practice 752 is one of the most referenced practices for evaluating vapor cloud explosion (VCE) impacts to site occupied buildings. This reference introduces generic VCE frequencies for different types of process units that are based on VCE incidents database. Although these reported VCE frequencies are not capable of illustrating all parameters that affect explosion likelihood, they are widely used in risk analysis studies and software packages. This paper delineates the structure of a more realistic method for estimation of local VCE frequencies for independent congested spaces or units as a function of process, site, and meteorological variables. Compared to traditional methods for VCE frequency estimation, the new proposed approach is supported by an obviously more populated and precisely categorized database of leakage frequencies and features a multi-variable functionality of process/plant conditions. Contrary to previous procedures that aimed at finding the frequency of occurrence for a single VCE incident, this proposed methodology characterizes each congested space with a local VCE frequency. This frequency is an integration of the frequencies pertaining to VCE's that are likely to be initiated by each congested space. This new VCE frequency can also be used to determine the level of explosion hazard in each unit and in risk matrix analysis.  相似文献   

13.
Coal mine refuge chambers are new devices for coal mine safety which can provide basic survival conditions after gas explosion. In order to simulate the propagation of underground methane/air mixture blast wave, and check structural safety of coal mine mobile refuge chamber, an underground tunnel model and a refuge chamber model have been established based on explicit nonlinear dynamic ANSYS/LS-DYNA 970 program. Results show that the reflected wave pressure on the impact surface was about two times higher than that on the incident one. The relationship between the pressure fields of the chamber was analyzed. The maximum pressure of gas explosion reached about 0.71 MPa, and the pulse width was 360 ms. The maximum absolute displacement and stress occurs at the main door center and the connection of stiffeners and the front plate, respectively. The entire coal mine mobile refuge chamber was in elastic state and its strength and stiffness meet the safety requirements. The cabin door, the front plate and the connecting flange at cabin back as well as the stiffeners on each side were the most critical components. Suggestions were put forward for the refuge chamber.  相似文献   

14.
The transportation of natural gas often relies on pipelines which require constant monitoring and regular maintenance to prevent spills or leaks. Pipeline incidents could pose a huge adverse impact on people, the environment, and society. Numerous efforts have been invested to identify contributing factors to pipeline incidents so that countermeasures could be developed to proactively prevent some incidents and reduce incident severities or impacts. However, the countermeasures may need to vary for different incidents due to the potential heterogeneity between incidents, and such heterogeneity is likely related to the geology, weather, and built environment which vary across space and time domain. The objective of this study is to revisit the correlates of pipeline incidents, focusing on the spatial and temporal patterns of the correlations between natural gas pipeline incident severity and contributing factors. This study leveraged an integrated spatio-temporal modeling approach, namely the Geographically and Temporally Weighted Ordered Logistic Regression (GTWOLR) to model the natural gas pipeline incident report data (2010–2019) from the U.S. Pipeline and Hazardous Material Safety Administration. Text mining was performed to extract additional information from the narratives in reports. Results show several factors have significant spatiotemporally varying correlations with the pipeline incident severity, and these factors include excavation damage, gas explosion, iron pipes, longer incident response time, and longer pipe lifetime. Findings from this study are valuable for pipeline operators, end-users, responders to jointly develop localized strategies to maintain the natural gas distribution system. More implications are discussed in the paper.  相似文献   

15.
液体火箭共底破裂爆炸安全设防距离   总被引:1,自引:0,他引:1  
陈景鹏  韩斯宇  孙克  栾晓 《火灾科学》2012,21(3):131-136
针对航天发射场一旦发生低温推进剂泄漏而导致火箭爆炸,会对人员和财产造成重大损失的问题,采用TNT当量模型和TNO(The Netherlands Organization)多能模型计算不同摩尔百分比的氢氧推进剂混合反应时产生爆炸冲击波的危害性,并模拟爆炸冲击波造成的事故影响范围,然后对两种模型的仿真结果加以对比分析,根据最不利原则选取出最终需要的结果,最后划分出安全设防距离。由仿真结果可知,不同的氢氧混合摩尔百分比造成的爆炸后果不同,同时TNT当量模型在爆炸近场处高估了爆炸超压值,在爆炸远场处低估了爆炸超压值,而TNO多能模型在理论上有效地对这一缺陷进行了弥补。对航天发射场的安全布局起到了一定的参考价值。  相似文献   

16.
A methodology for estimating the blast wave overpressure decay in air produced by a gas explosion in a closed-ended tunnel is proposed based on numerical simulations. The influence of the tunnel wall roughness is taken into account in studying a methane/air mixture explosion and the subsequent propagation of the resulting shock wave in air. The pressure time-history is obtained at different axial locations in the tunnel outside the methane/air mixture. If the shock overpressure at two, or more locations, is known, the value at other locations can be determined according to a simple power law. The study demonstrates the accuracy of the proposed methodology to estimate the overpressure change with distance for shock waves in air produced by methane/air mixture explosions. The methodology is applied to experimental data in order to validate the approach.  相似文献   

17.
The overpressure produced by the boiling liquid expanding vapor explosion (BLEVE) is still not well understood. Various methods have been published on the overpressure modeling in the far field. They mostly differ by the modeling of the expansion energy, used to scale the distance to the source where the overpressure needs to be calculated. But these methods usually include a experimentally fitted reduction factor, and are mostly overestimating the overpressures. Today there is a growing interest in modeling the BLEVE overpressure in the near field, for studying the blast effect on critical infrastructure such as bridges and buildings. This requires a much better understanding of the BLEVE blast. This paper goes deeper in the understanding of the physical phenomenon leading to the BLEVE blast wave generation and propagation. First, mid-scale BLEVE experiments in addition to new experimental data for near field blast from a small scale supercritical BLEVE are analyzed. And second, an analysis method of the shocks observed in the experiments is presented based on fundamental gas dynamics, and allows the elaboration of a new modeling approach for BLEVE overpressure, based on the calculation of the initial overpressure and radius of the blast.  相似文献   

18.
为研究民居内可燃气体爆炸规律及特点,预防燃气泄漏爆炸案/事件发生,提高案/事件现场勘验与侦破效率,综述受限空间内燃气爆炸的形成机理和传播特性、现场结构和障碍物对爆炸的影响规律以及爆炸后现场勘验和重建技术方法,阐述数值仿真技术在气体爆炸案件现场勘验和重建中发挥的作用。研究结果表明:民居内燃气爆炸现场特征明显异于传统爆炸类案件现场,尤其是炸点特征存在差异;数值仿真可有效揭示燃气泄漏爆炸的形成、传播和作用机理;目前,燃气爆炸实验研究方法和体系需进一步统一,以提高研究结论普适性。研究结果可为民居内燃气爆炸现场勘验和重建提供技术支持。  相似文献   

19.
High temperature flame fronts generated in methane–air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane–air explosion processes for various initial premixed methane–air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane–air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane–air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane–air flame greatly exceeds the initial premixed methane–air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane–air region. The length of the initial premixed methane–air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents.  相似文献   

20.
张可  姚斌 《火灾科学》2021,30(4):242-250
细水雾灭火系统在公路隧道中的应用引发了较多关注,但是针对特大断面公路隧道的研究仍然不足。以2种大断面及4种特大断面公路隧道为研究对象,选取额定流量35 L/min、额定压力10 MPa的高压细水雾喷头,选择4种喷头布置形式,考虑火源功率、位置、遮挡物等影响因素,以隧道顶棚达到耐火极限的临界温度和相邻车辆被引燃的临界热辐射强度为判据,利用FDS模拟软件分析得到适用于隧道的细水雾喷头布置方案。结果表明对于特大断面隧道,细水雾单排顶喷布置不能有效抑制30 MW的大货车火灾,应采用增加顶喷或侧喷喷头的布置形式,从而保护隧道结构安全,防止相邻车辆被引燃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号