首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO 3 ), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment nitrate leaching zones is proposed, whereby most stream NO 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO 3 concentrations.  相似文献   

2.
In 1989, a watershed acidification experiment was begun on the Fernow Experimental Forest in West Virginia, USA. Ammonium sulfate fertilizer (35.5 kg N ha−1 yr−1and 40.5 kg S ha−1 yr−1) was applied to a forested watershed (WS3) that supported a 20-year-old stand of eastern deciduous hardwoods. Additions of N and S are approximately twice the ambient deposition of nitrogen and sulfur in the adjacent mature forested watershed (WS4), that serves as the reference watershed for this study. Acidification of stream water and soil solution was documented, although the response was delayed, and acidification processes appeared to be driven by nitrate rather than sulfate. As a result of the acidification treatment, nitrate solution concentrations increased below all soil layers, whereas sulfate was retained by all soil layers after only a few years of the fertilization treatments, perhaps due to adsorption induced from decreasing sulfate deposition. Based on soil solution monitoring, depletion of calcium and magnesium was observed, first from the upper soil horizons and later from the lower soil horizons. Increased base cation concentrations in stream water also were documented and linked closely with high solution levels of nitrate. Significant changes in soil chemical properties were not detected after 12 years of treatment, however.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号