首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt-affected soils are a major threat to agriculture especially in the semiarid regions of the world. The effective management of these soils requires adequate understanding of not only how water and, hence, solutes are transported within the soil, but also how soil salinity and sodicity spatially interact to determine soil structural breakdown. For sustainable agricultural production, information on quantitative soil quality, such as salinity, is required for effective land management and environmental planning. In this study, quantitative methods for mapping indicators of soil structural stability, namely salinity and sodicity, were developed to assess the effect of these primary indicators on soil structural breakdown. The current levels of soil salinity, as measured by electrical conductivity (EC) of the soil/water suspension, soil sodicity, represented by exchangeable sodium percentage (ESP), and aggregate stability, were assessed. Remote sensing, geographical information system (GIS), and geostatistical techniques-primarily regression-kriging and indicator-kriging-were used to spatially predict the soil sodicity and salinity. The patterns of salinity (EC) and sodicity (ESP > 5%) were identified. The effect of land use on these soil quality indicators was found to be minimal. Co-spatial patterns were elucidated between sodic soils (defined by ESP > 5%) and highly probable mechanically dispersive soils predicted from indicator-kriging of ASWAT scores. It was established that the incorporation of EC with ESP into an objective index, called electrolyte stability index (ESI = ESP/EC), gave a good indication of soil dispersion, although the threshold ESI value below which effective structural breakdown might occur is 0.025, which is twice as small as the expected 0.05. The discrepancies between ESI and ASWAT scores suggest that other soil factors than salinity and sodicity are affecting soil structural breakdown. This calls for further investigation. The study provides valuable information in the form of risk zones of soil structural breakdown for land management. These zones, with a probability of mechanical soil dispersion of >0.70, require immediate management attention with greater monitoring and amelioration techniques, particularly gypsum or lime application and/or altered cultivation techniques.  相似文献   

2.
Remote Sensing of Landscape-Level Coastal Environmental Indicators   总被引:5,自引:1,他引:4  
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.  相似文献   

3.
ABSTRACT: Landsat satellite Thematic Mapper (TM) data were used to assess regional soil moisture conditions. The mid-infrared (MIR) data of TM band 7 were overlain onto four principal land-use categories (Agricultural/Irrigated, Urban/Clearings, Forest/ Wetlands, Water) using a geographic information system (GIS). M data were used to assess four qualitative surface soil-moisture conditions (water/very wet, wet, moist, and dry) within each land-use category of a 208,354 ha southwestern Florida study area. The MIR response was inversely related to the qualitative surface soil-moisture content. Integration of Landsat TM MIR data with land use through GIS appears to be a useful technique for high-resolution regional soil moisture assessment, and further research to reline this technique is recommended.  相似文献   

4.
This study describes the deforestation impact from three settlements, 5 de Junio, El Tigre, and 30 de Agosto, near the Madidi National Park in Bolivia. First deforestation rates along the road that connects the settlements and then deforestation within each settlement are examined. Landsat Thematic Mapper (TM) imagery from 1987, 1997, and 2000 were used to measure the deforestation. Face-to-face interviews were also used to collect detailed social and land-use information. Road-building and farming have been the major causes of deforestation in this region. The TM measurements indicate a high increase in the deforestation rate along the road in the area of study. The results also show a rapidly escalating deforestation rate in 5 de Junio, a potential high future deforestation rate in El Tigre, and a gradual deforestation increase in 30 de Agosto. The information provided by the settlers about clearing was compared with the imagery analysis. Generally, the settlers estimates were lower than the deforestation as derived from the imagery.  相似文献   

5.
Many coastal regions in China are confronted with pressing problems of scarce land resources and heavy population. Over the past 30 years, considerable parts of coastal tidelands have been enclosed and reclaimed for agricultural land uses. To assess, plan, and implement large-scale reclamation programs, up-to-date and reliable information concerning the nature, areal extent, and physical and chemical characteristics of coastal saline lands is essential. This paper reports a remote sensing approach to detecting coastal saline land uses in Shangyu City, China, by using multi-temporal Landsat images. First, with the aid of resolution-sharpened Landsat-7 ETM+ images and their enhanced linear features, a visual interpretation is applied to extract individual dikes. Based on time series images and local government records, a spatial zoning procedure is then used to define six sub-zones with different historical years of reclamation. It shows that a total of 15,668 ha of coastal saline lands were enclosed and reclaimed from 1969 to 1996. Second, a modified land-use classification system for the study area is prescribed, and both unsupervised and supervised classifiers are performed for land-use classifications of grouped sub-zones. Information obtained from the spatial zoning, Tasseled Cap transformation and Normalized Difference Vegetation Index, is also utilized to facilitate the supervised classification process. Finally, a detailed land-use map is produced, with an overall classification accuracy of 77.8%. Results show that dominant agricultural land uses of sub-zones are changed with historical reclamation years, from saline lands with wildgrass (very recently reclaimed) to aqua-farm ponds, to cotton fields, and to paddy fields and orchards (very early reclaimed). This transform process is primarily affected by soil salinities, and according to a soil survey an electrical conductivity of saturation extract decreased from 7.3 ds/m in the saline land reclaimed in 1996 to below 2 ds/m in the land reclaimed before 1969. The study concludes that multi-temporal remotely sensed images are important and effective data sources for monitoring the rapid changes of coastal land uses.  相似文献   

6.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

7.
The impacts of land use and land cover (LULC) change in buffer zones surrounding protected ecological reserves have important implications for the management and conservation of these protected areas. This study examines the spatial and temporal patterns of LULC change along the boundary of Rio Abiseo National Park in the Northern Peruvian Andes. Landscape change within four ecological zones was evaluated based on trends expected to occur between 1987 and 2001. Landsat TM and ETM imagery were used to produce LULC classification maps for both years using a hybrid supervised/unsupervised approach. LULC changes were measured using landscape metrics and from-to change maps created by post-classification change detection. Contrary to expectations, tropical upper wet montane forest increased despite being threatened by human-induced fires and cattle grazing of the highland grasslands inside the park. Within the park’s buffer zone, tropical moist forest remnants were fragmented into more numerous and smaller patches between 1987 and 2001; this was in part due to conversion into agricultural land. The methods used in this study provide an effective way to monitor LULC change detection and support the management of protected areas and their surrounding environments.  相似文献   

8.
A survey of land degradation was undertaken in New South Wales, Australia during 1987–1988. The aims of the survey were to assess the location, extent, and severity of ten forms of degradation and to present the data in map and statistical form. Sample points were located on a regular grid. The method was designed so that data could be acquired from aerial photographs, expert local knowledge, and limited field checking. Individual statewide maps were prepared for each form of degradation. Map data were shown in pixel form. Sheet and rill erosion and soil structure decline were confined mostly to lands used for cropping. Gully erosion was commonly found across the state, while mass movement was confined to steeper lands. There were three severe areas of dryland salinity; irrigation salinity was mapped in parts of the southern irrigation lands. Induced soil acidity was severe in some cropping and pasture lands. Absence of tree regrowth was a noticeable feature of lands used for cropping. The survey enabled community awareness of the problems of land degradation to be increased, in addition to assisting regional land managers in resource allocation. The survey also provided the basis for the future location of sites that could be used to monitor the trends in the status of land degradation.  相似文献   

9.
ABSTRACT: Water supplies in Arizona are becoming increasingly limited because municipal, industrial, and agricultural consumption depletes ground water reserves by three million acre-feet annually. Additional demands are being created by electric power generation, particularly in northeastern Arizona where ground water pumpage is expected to escalate by sixfold during the next 10 years. The results of a study to determine the ease and feasibility of using satellite imagery as a tool in exploring for new sources of ground water are reported. Lineaments detected on Landsat images of two sites were mapped and correlated with well data in the two study areas by means of well centered grid model. The correlations developed between lineament density and water well data in the two study sites support the hypothesis that a relationship exists between regional geologic structure and the presence of ground water.  相似文献   

10.
This study investigated human-induced long-term wetland degradation that occurred in the Sanjiang Plain. Results from analyzing land-use/land-cover data sets derived from remotely sensed Landsat Multispectral Scanner/Thematic Mapper imagery for four time points showed that wetlands in the Sanjiang Plain have been severely transformed, and the area of wetlands decreased by 38 % from 1976 to 1986, by 16 % from 1986 to 1995, and by 31 % from 1995 to 2005. This study showed that transition to agricultural cultivation accounted for 91 % of wetland losses, whereas transition to grassland and forest accounted for 7 % of the wetlands losses. Institutional strategies and market policies probably exerted great impacts on agricultural practice that directly or indirectly influenced the decrease in wetlands. This study also indicated that an increased population likely led to wetland conversion to cropland by showing a high correlation between population and cropland (R 2 = 0.92, P < 0.001). Wetland loss occurred during later time intervals at a low rate. This study suggests that the existing wetland-protection measures in the Sanjiang Plain should be reinforced further because of possible environmental consequences of wetland loss, such as enhanced soil carbon emission, changed hydrological cycling, and regional temperature increase.  相似文献   

11.
Land Use Change and Land Degradation in Southeastern Mediterranean Spain   总被引:1,自引:0,他引:1  
The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.  相似文献   

12.
Urbanization and the Loss of Resource Lands in the Chesapeake Bay Watershed   总被引:3,自引:0,他引:3  
We made use of land cover maps, and land use change associated with urbanization, to provide estimates of the loss of natural resource lands (forest, agriculture, and wetland areas) across the 168,000 km2 Chesapeake Bay watershed. We conducted extensive accuracy assessments of the satellite-derived maps, most of which were produced by us using widely available multitemporal Landsat imagery. The change in urbanization was derived from impervious surface area maps (the built environment) for 1990 and 2000, from which we estimated the loss of resource lands that occurred during this decade. Within the watershed, we observed a 61% increase in developed land (from 5,177 to 8,363 km2). Most of this new development (64%) occurred on agricultural and grasslands, whereas 33% occurred on forested land. Some smaller municipalities lost as much as 17% of their forest lands and 36% of their agricultural lands to development, although in the outlying counties losses ranged from 0% to 1.4% for forests and 0% to 2.6% for agriculture. Fast-growing urban areas surrounded by forested land experienced the most loss of forest to impervious surfaces. These estimates could be used for the monitoring of the impacts of development across the Chesapeake Bay watershed, and the approach has utility for other regions nationwide. In turn, the results and the approach can help jurisdictions set goals for resource land protection and acquisition that are consistent with regional restoration goals.  相似文献   

13.
In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (EC< 1.5dSm(-1); pH<8), whereas the quality of ground water remained highly saline and unfit for irrigation and drinking. These observations were compared with the ground scenarios of the study region and possible causes for such changes and the remedial measures for taking up regular agricultural practices are also discussed.  相似文献   

14.
To estimate the freshwater loss in coastal aquifers due to salinisation, a numerical model based on the sharp interface assumption has been introduced. The developed methodology will be useful in areas where limited hydrological data are available. This model will elaborate on the changes in fresh groundwater loss with respect to climate change, land use pattern and hydrologic soil condition. The aridity index has been introduced to represent the variations in precipitation and temperature. The interesting finding is that the deforestation leads to increase groundwater recharge in arid areas, because deforestation leads to reduce evapotranspiration even though it favors runoff. The combined climate and land use scenarios show that when the aridity index is less than 60, the agricultural lands give higher groundwater recharge than other land use patterns for all hydrologic soil conditions. The calculated recharge was then used to estimate the freshwater-saltwater interface and percentage of freshwater loss due to salinity intrusion. We found that in arid areas, the fresh groundwater loss increases as the percentage of forest cover increases. The combined effects of deforestation and aridity index on fresh groundwater loss show that deforestation causes an increase in the recharge and existing fresh groundwater resource in areas having low precipitation and high temperature (arid climates).  相似文献   

15.
Expansion of irrigated agriculture in the Aral Sea Basin in the second half of the twentieth century led to the conversion of vast tracks of virgin land into productive agricultural systems resulting in significant increases in employment opportunities and income generation. The positive effects of the development of irrigated agriculture were replete with serious environmental implications. Excessive use of irrigation water coupled with inadequate drainage systems has caused large‐scale land degradation and water quality deterioration in downstream parts of the basin, which is fed by two main rivers, the Amu‐Darya and Syr‐Darya. Recent estimates suggest that more than 50% of irrigated soils are salt‐affected and/or waterlogged in Central Asia. Considering the availability of natural and human resources in the Aral Sea Basin as well as the recent research addressing soil and water management, there is cause for cautious optimism. Research‐based interventions that have shown significant promise in addressing this impasse include: (1) rehabilitation of abandoned salt‐affected lands through halophytic plant species; (2) introduction of 35‐day‐old early maturing rice varieties to withstand ambient soil and irrigation water salinity; (3) productivity enhancement of high‐magnesium soils and water resources through calcium‐based soil amendments; (4) use of certain tree species as biological pumps to lower elevated groundwater levels in waterlogged areas; (5) optimal use of fertilizers, particularly those supplying nitrogen, to mitigate the adverse effects of soil and irrigation water salinity; (6) mulching of furrows under saline conditions to reduce evaporation and salinity buildup in the root zone; and (7) establishment of multipurpose tree and shrub species for biomass and renewable energy production. Because of water withdrawals for agriculture from two main transboundary rivers in the Aral Sea Basin, there would be a need for policy level interventions conducive for enhancing interstate cooperation to transform salt‐affected soil and saline water resources from an environmental and productivity constraint into an economic asset.  相似文献   

16.
To address the limited application of analytical and modelling techniques in prioritizing revegetation sites for dryland salinity (saline land) management, a case study of the Hodgson Creek catchment in Queensland, Australia, was conducted. An analytical framework was developed, incorporating the use of spatial datasets (Landsat 7 image, DEM, soil map, and salinity map), which were processed using digital image processing techniques and a geographic information system (GIS). Revegetation sites were mapped and their priority determined based on recharge area, land use/cover and sub‐catchment salinity. The analytical framework presented here enhances the systematic use of land information, widens the scope for scenario testing, and improves the testing of alternative revegetation options. The spatial patterns of revegetation sites could provide an additional set of information relevant in the design of revegetation strategies.  相似文献   

17.
For landslide susceptibility mapping, this study applied and verified a Bayesian probability model, a likelihood ratio and statistical model, and logistic regression to Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite imagery and field surveys; and a spatial database was constructed from topographic maps, soil type, forest cover, geology and land cover. The factors that influence landslide occurrence, such as slope gradient, slope aspect, and curvature of topography, were calculated from the topographic database. Soil texture, material, drainage, and effective depth were extracted from the soil database, while forest type, diameter, and density were extracted from the forest database. Land cover was classified from Landsat TM satellite imagery using unsupervised classification. The likelihood ratio and logistic regression coefficient were overlaid to determine each factors rating for landslide susceptibility mapping. Then the landslide susceptibility map was verified and compared with known landslide locations. The logistic regression model had higher prediction accuracy than the likelihood ratio model. The method can be used to reduce hazards associated with landslides and to land cover planning. Note: This version was published online in June 2005 with the cover date of August 2004.  相似文献   

18.
在3S技术的支持下,以1990年和2005年的TM图像解译数据为基础,采用谢高地的评价方法分析了乌苏-奎屯-独山子地区景观类型与生态系统服务功能的变化特征,为研究该地区水土开发与生态环境演变提供了依据。结果表明,1990-2005年,乌苏-奎屯-独山子地区农田、灌木林地、城镇及工业用地、盐碱地、水域和未利用地面积增加,其他乔木林地、草地、冰川和沼泽面积均减少;区域生态系统服务功能从1990年的9 182.84×106元减少到2005年的8 627.96×106元,减少量为554.87×106元,减少率为6.04%。保护区域生态环境,恢复和提高区域生态系统服务功能是该区域生态环境建设的重要任务。  相似文献   

19.
This research investigates urban sprawl in the Greater Toronto Area (GTA) between 1985 and 2005 and the nature of the resulting landscape fragmentation, particularly with regard to the Oak Ridges Moraine (ORM), an ecologically important area for the region. Six scenes of Landsat TM imagery were acquired in summer of 1985, 1995, and 2005. These images and their texture measures were classified into eight land cover classes with very satisfactory final overall accuracies (93–95?%). Analysis of the classifications indicated that urban areas grew by 20?% between 1985 and 1995 and by 15?% between 1995 and 2005. Landscape fragmentation due to spatio-temporal land cover changes was evaluated using urban compactness indicators and landscape metrics, and results from the latter were used to draw conclusions about probable environmental impact. The indicator results showed that urban proportions increased in nearly all areas outside of the metropolitan center, including on portions of the ORM. The landscape metrics reveal that low density urban areas increased significantly in the GTA between 1985 and 2005, mainly at the expense of agricultural land. The metric results indicate increased vulnerability and exposure to adverse effects for natural and semi-natural land cover through greater contrast and lowered connectivity. The degree of urban perimeter increased around most environmentally significant areas in the region. Changes like these negatively impact species and the regional water supply in the GTA. Further investigation into specific environmental impacts of urban expansion in the region and which areas on the ORM are most at risk is recommended.  相似文献   

20.
Using Landsat data to estimate evapotranspiration of winter wheat   总被引:1,自引:0,他引:1  
An evapotranspiration (ET) model that accurately estimates daily water use and soil moisture on a regional basis is required for many agricultural and hydrological studies. The model should use meterological data that are readily available and crop information that is responsive to the changing vigor of the plants.We evaluated an ET model with a weighing lysimeter and then applied it to winter wheatfields at four Kansas locations. Model inputs are solar radiation, temperature, precipitation, and leaf area index (LAI); included in the outputs are estimates of transpiration, evaporation, and soil moisture. An equation was developed to estimate LAI from Landsat data. Because LAI can be estimated from satellites, the ET model can potentially be used on a regional basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号