首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black carbon (BC), characterized by high microporosity and high specific surface area (SSA), has been demonstrated to have substantial contributions to the sorption of hydrophobic organic chemicals in soils and sediments. Other naturally occurring organic matters provide soft and penetrable sorption domains while may cling to BC and affect its original surface properties. In this work, we studied the sorption sites of a Yangtze River sediment sample with organic carbon (OC) content of 3.3 % and the preheated sediment (combusted at 375 °C) with reduced OC content (defined as BC) of 0.4 % by gas and pyrene sorption. The SSA and microporosity of the pristine and preheated sediments were characterized by N2 and CO2 adsorption. The results suggest that the adsorption of N2 was hindered by amorphous organic carbon (AOC) in the pristine sediment but CO2 was not. Instead, the uptake of CO2 was higher in the presence of AOC, likely due to the partition of CO2 molecules into the organic matter. The pyrene adsorptions to BC in pristine and preheated sediments show a similar adsorption capacity at high concentration, suggesting that AOC of ca. 2.9 % in the pristine sediment does not reduce the accessibility to the sorption sites on BC for pyrene.  相似文献   

2.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

3.
The contents of nonhydrolyzable organic matter (NHC) and black carbon (BC) were measured in soils and sediments from the Pearl River Delta, South China. Polycyclic aromatic hydrocarbons (PAHs) were extracted respectively by Soxhlet and an accelerated solvent extraction device (ASE) using different solvents. In addition, sequential aqueous leaching at different temperatures was carried out. The PAH content extracted with the sequential three solvent ASE is two times higher than that using the Soxhlet extraction method. The relationship of the PAH content with the NHC content is very significant. The PAH concentrations measured at various temperature steps fit well to the Van't Hoff equation and the enthalpy was estimated. The investigation indicates that condensed organic matter such as kerogen carbon, aged organic matter, and BC is relevant for the extraction and distribution of native PAHs in the investigated field soils and sediments.  相似文献   

4.
Pikaar I  Koelmans AA  van Noort PC 《Chemosphere》2006,65(11):2343-2351
Sorption to ‘hard carbon’ (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for sorption of 12 compounds onto 12 ACs and one charcoal, at different temperatures (79 isotherms in total). A statistical analysis, accounting for differences in the number of fitting parameters, demonstrates that the dual Langmuir equation is in general superior and/or preferable to the single and triple Langmuir equation, the Freundlich equation, a Polanyi–Dubinin–Manes equation, and the Toth equation. Consequently, the analysis suggests the presence of two types of adsorption sites: a high-energy (HE) type of site and a low-energy (LE) type of site. Maximum adsorption capacities for the HE domain decreased with temperature while those for the LE domain increased. Average Gibbs free energies for adsorption from the hypothetical pure liquid state at 298 K were fairly constant at −15 ± 4 and −5 ± 4 kJ mol−1 for the HE and LE domain, respectively.  相似文献   

5.
A P Deshmukh  B Chefetz  P G Hatcher 《Chemosphere》2001,45(6-7):1007-1022
Chemical composition of coastal marine sedimentary organic matter (SDOM) is a function of natural and anthropogenic inputs to the system. In this study a combination of analytical techniques: 13C nuclear magnetic resonance (NMR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and tetramethylammonium hydroxide thermochemolysis-gas chromatography/mass spectrometry (TMAH thermochemolysis-GC/MS) were used to study the contribution of hydrophobic organic contaminants and terrestrial OM to the SDOM. Sediments were collected from two sites in the San Diego Bay: Paleta Creek, which is contaminated, and Coronado Cayes, which is relatively pristine. Concentrations of polycyclic aromatic hydrocarbons (PAHs) at both sites, as determined by ultrasonically assisted lipid extraction are found to be higher in the surface layer, to generally decrease with depth, and to be present at about two orders of magnitude higher concentration at the contaminated site as compared to the pristine site. The sediment samples were partially deashed with HF/HCI treatment before further analysis. 13C-NMR spectra of the Paleta Creek samples show a higher aromatic carbon content and a distinct phenolic carbon peak. This suggests a large input from terrestrial carbon (lignin). Data from both Py-GC/MS and TMAH thermochemolysis-GC/MS support this and indicate the presence of lignin-derived residues, primarily of the guaiacyl type at the contaminated site. In contrast, SDOM at the Coronado Cayes site exhibits less terrestrial input. In general, the SDOM resembles soil OM rather than typical marine SDOM. Chemical analyses of the lipid-extracted, partially deashed sediments, does not reveal the presence of any PAHs.  相似文献   

6.
Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 μg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.  相似文献   

7.
Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments   总被引:4,自引:0,他引:4  
Batch kinetic and isotherm experiments were conducted to determine the sorption-desorption behavior of 2,4-dichlorophenol from seawater solutions by marine sediments containing various amounts of organic carbon (from 1.02% to 12.72% dry weight). The results indicated linear type isotherms for sorption and desorption in all marine sediments studied. The observed difference in linear sorption coefficients between sorption and desorption was indicative of sorption hysteresis. The kinetic experiments showed that equilibrium was established in less than 20 h. The study is significant with respect to sediment remediation in contaminated harbors and coastal areas.  相似文献   

8.
The environmental behavior of antibiotics has attracted great research attention. However, their sorption mechanisms in soils/sediments are still unknown. Comparison of the sorption properties between the widely-studied hydrophobic organic contaminants (HOCs) and antibiotics may provide valuable insight to antibiotic sorption mechanisms. Thus, in this study batch experiments for pyrene (PYR), bisphenol A (BPA), and sulfamethoxazole (SMX) sorption were conducted on a sediment sample and its separated fractions. Our results showed the high sorption of PYR on black carbon and organic matter. Although high sorption of SMX was observed for both separated organic fractions (humic acids) and inorganic mineral particles, the original sediment particles showed relatively low sorption. Competitive sorption between SMX and dissolved humic acid on mineral particles was observed in this study. This competitive interaction is a unique process for antibiotic sorption in soils/sediments compared with apolar HOCs and may be one of the important factors controlling the antibiotic sorption.  相似文献   

9.
Ran Y  Xiao B  Fu J  Sheng G 《Chemosphere》2003,50(10):1365-1376
Sorption and desorption hysteresis of 1,2-dichlorobenzene, 1,3,5-trichlorobenzene, naphthalene, and phenanthrene were investigated for the Borden aquifer material with total organic carbon of 0.021% and the isolated natural organic matter (NOM). The isolated NOM is a kerogen type of organic matter with relatively low maturation degree and contained many different types of organic matters including vitrinite particles. The modified Freundlich sorption capacities (logKf and logKfoc) are very close for the sorption of the four solutes by the isolated NOM and the original sand, respectively. Isotherm non-linearity (n value) and hysteric behaviors are related to solute molecular properties (e.g. Kow and molecular size). Kerogen encapsulated by inorganic matrices in the original aquifer may not be accessed fully by solutes. The larger the hydrophobic organic chemical (HOC) (hydrophobic organic contaminant) molecule is, the lower accessibility of the HOC to kerogen. This study disputes widely held hypothesis that sorption to mineral surfaces may play a major role in the overall sorption by low TOC (e.g. 0.1% by mass) geomaterials such as Borden sand. It also demonstrates the importance of the condensed NOM domain, even at very low contents, in the sorption and desorption hysteresis of HOCs in groundwater systems.  相似文献   

10.
Xiao D  Pan B  Wu M  Liu Y  Zhang D  Peng H 《Chemosphere》2012,86(2):183-189
The degradation intermediates of phenanthrene (PHE) may have increased health risks to organisms than PHE. Therefore, environmental fate and risk assessment studies should take into considerations of PHE degradation products. This study compared the sorption properties of PHE and its degradation intermediates, 9,10-phenanthrenequinone (PQN) and 9-phenanthrol (PTR) in soils, sediments and soil components. A relationship between organic carbon content (fOC) and single-point sorption coefficient (log Kd) was observed for all three chemicals in 10 soils/sediments. The large intercept in the log fOC − log Kd regression for PTR indicated that inorganic fractions control PTR sorption in soils/sediments. No relationship between specific surface area and Kd was observed. This result indicated that determination of surface area based on gas sorption could not identify surface properties for PHE, PQN, and PTR sorption and thus provide limit information on sorption mechanisms. The high sorption and strong nonlinearity (low n values) of PTR in comparison to PHE suggested that the mobility of PTR could be lower than PHE. Increased mobility of PQN compared with PHE may be expected in soils/sediments because of PQN lower sorption. The varied sorption properties of the three chemicals suggested that their environmental risks should be assessed differently.  相似文献   

11.
Black carbon (BC; soot and charcoal) can be an extremely strong sorbent for organic compounds. In a previous study, sorption of d(10)-phenanthrene (d(10)-PHE) to BC in an unmodified contaminated sediment was found to be nine times less than that for BC isolated from this sediment. To find out the mechanism of this sorption attenuation (competition for BC sites between d(10)-PHE and native PAHs or blocking of BC sites by natural organic matter), we determined the effect on d(10)-PHE-BC sorption isotherms of additions of either PAHs or precipitated humic acid. Addition of humic acid did not significantly decrease BC sorption, whereas PAH additions (equal to the native PAH content in the original sediment) did, by about one order of magnitude. Therefore, competition between d(10)-PHE and the native PAHs could explain the whole attenuation of sorption to BC in unmodified sediments.  相似文献   

12.
Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r2 = 0.85) than versus OC (r2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6+/-3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone.  相似文献   

13.
The main objective of the present study was to assess the roles of various soil components in sorption of organic compounds differing in polarity. Removal of the whole soil organic matter decreased sorption by approximately 86% for nonpolar 1,3,5-trichlorobenzene (TCB), but only 34-54% for highly polar 1,3,5-trinitrobenzene (TNB); however, removal of the extractable humic/fulvic acids did not much affect sorption of the two sorbates. With normalization of solute hydrophobicity, TNB exhibits several orders of magnitude stronger sorption compared with TCB to maize burn residue (black carbon), extracted humic acid and Na+-saturated montmorillonite clay, suggesting specific sorptive interactions for TNB with the individual model soil components. It was proposed that sorption of TCB to the bulk soil was dominated by hydrophobic partition to the condensed, non-extractable fraction of organic matters (humin/kerogen and black carbon), while interactions with soil clay minerals were an important additional factor for sorption of TNB.  相似文献   

14.
Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds.  相似文献   

15.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

16.
Earlier studies had shown significant differences in sorption of nine pesticides in soils collected from two landuses (native vegetation and market gardens), which could not be explained on the basis of organic carbon content alone. Consequently it was hypothesised that the differences in sorption behaviour between the two landuses may be due to variation in the chemistry of the organic carbon. In this study the relationship between sorption behaviour of the nine chemicals and soil organic carbon chemistry, as determined by solid-state (13)C NMR spectroscopy, was investigated. No significant differences were found between the two landuses in the distribution of the four main spectral regions of the (13)C NMR spectra of soil OC, except for the carbonyl fraction (165-220ppm), which may reflect the low OC content of the soils from both landuses. For all chemicals, except prometryne, the most significant (P<0.01 or P<0.001) relationship between K(d) values and types of OC was found with the aromatic (110-165ppm) or the alkyl (0-45ppm) fraction. A comparison was made of the variability of K(d) values normalized over OC (i.e. K(oc)), alkyl, aromatic and alkyl+aromatic fractions. Expressing K(d) values for all chemicals, except azinphos methyl, in soils under native vegetation as K(alkyl) or K(aromatic) greatly decreased the variability compared with the K(oc) value. However in the cultivated soils only the sorption coefficients for DEA, DIA and fenamiphos showed a decrease in variability when expressed as K(alkyl) or K(aromatic). This reflected the stronger relationship between sorption coefficients and the alkyl and aromatic fraction of soil OC in soils from native vegetation compared with those determined from the market garden soils. The different relationships between sorption coefficients and types of OC of the two landuses also suggests that the type of aromatic and alkyl carbon under the two landuses is different and NMR characterisation of the OC was not sufficient to distinguish these differences.  相似文献   

17.
To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co is carrying out site investigations, including extensive studies of different parts of the surface ecosystems, at two sites in Sweden. Here we use the output from detailed modeling of the carbon dynamics in the terrestrial, limnic and marine ecosystems to describe and compare major pools and fluxes of organic matter in the Simpevarp area, situated on the southeast coast of Sweden. In this study, organic carbon is used as a proxy for radionuclides incorporated into organic matter. The results show that the largest incorporation of carbon into living tissue occurs in terrestrial catchments. Carbon is accumulated in soil or sediments in all ecosystems, but the carbon pool reaches the highest values in shallow near-land marine basins. The marine basins, especially the outer basins, are dominated by large horizontal water fluxes that transport carbon and any associated contaminants into the Baltic Sea. The results suggest that the near-land shallow marine basins have to be regarded as focal points for accumulation of radionuclides in the Simpevarp area, as they receive a comparatively large amount of carbon as discharge from terrestrial catchments, having a high NPP and a high detrital accumulation in sediments. These focal points may constitute a potential risk for exposure to humans in a future landscape as, due to post-glacial land uplift, previous accumulation bottoms are likely to be used for future agricultural purposes.  相似文献   

18.
The sorptive behavior of the experimental herbicide quinmerac (7-chloro-3-methyl-quinoline-8-carboxylic acid) was investigated in soils of different organic carbon content. Distribution coefficients are low (Kd = 0.03 - 12 mL g−1) and are mainly determined by the soil organic carbon content. The adsorption mechanism operating in neutral to slightly acid agricultural soils is supposed to be cation bridging with the anionic form of quinmerac. Under acid conditions (pH 5.2) the predominating sorption mechanism is hydrophobic interaction. Therefore soil pH and cationic composition are also major factors determining the sorptive capacity of soils for quinmerac.

Adsorption kinetics, equilibrium adsorption and desorption isotherms were determined in batch experiments. Sorption kinetics were investigated at various times from 15 min to 96 hours. A two-step sorption behavior with time was found for the anionic form indicating two types of sorption mechanisms or sorption sites. Equilibrium for the first type was reached at a time-scale of minutes and for the second type after 24 hours. Adsorption isotherms were determined for two soil/solution ratios 1/5 and 1/3. Alteration of the adsorbent concentration exerted a strong influence on the adsorption isotherms. An increase of sorption was found with increasing adsorbent concentration. Under natural soil conditions sorption is therefore expected to be higher compared to the batch experiments. Desorption isotherms were obtained using the consecutive desorption method. Desorption hysteresis was not observed which indicates weak interactions. Implications of the results for the movement of quinmerac under field conditions and for models describing transport are discussed.  相似文献   


19.
Black carbon: the reverse of its dark side   总被引:16,自引:0,他引:16  
The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk posed by organic contaminants in sediments and soils. Extremely efficient sorption to black carbon pulls highly toxic polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, polybrominated diphenylethers and pesticides into sediments and soils. This increased sorption is general, but strongest for planar (most toxic) compounds at environmentally relevant, low aqueous concentrations. Black carbon generally comprises about 9% of total organic carbon in aquatic sediments (median value of 300 sediments), and then may reduce uptake in organisms by up to two orders of magnitude. This implies that current environmental risk assessment systems for these contaminants may be unnecessarily safe.  相似文献   

20.
Black carbon (BC) and total organic carbon (TOC) were quantified in the surface soils of Switzerland (N = 105) and Delhi (N = 36), India, to examine their relationships with contents of polycyclic aromatic hydrocarbons (PAH). BC content in Swiss (background) soils (N = 104) varied from 0.41 to 4.75 mg/g (median: 1.13 mg/g) and constituted 1-9% (median: 3%) of TOC. Indian (urban) soils had similar BC concentrations (0.37-2.05 mg/g, median: 1.19 mg/g), with relatively higher BC/TOC (6-23%, median: 13%). Similar to TOC, BC showed significant positive correlation with lighter PAH, but no correlation with heavier PAH in Swiss soils. In contrast, heavier PAH were significantly correlated only with BC in Delhi soils. It seems that TOC governs the distribution of PAH in organic matter rich background soils, while the proximity to emission sources is reflected by BC-PAH association in urban soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号