首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
植物SOD活性变化与其抗污能力的关系   总被引:4,自引:0,他引:4  
研究了模拟酸雨、SO2单独与复合污染对水杉、杉木、龙柏3种抗污能力不同的植物SOD活性、细胞汁酸度、细胞膜透性的影响。结果表明,SOD的活性经污染后变化规律在不同植物有所不同,而这种变化与其抗污能力有关。SOD活性升高者,其抗污能力强,反之则弱,与本底值大小无关。  相似文献   

2.
利用谷壳灰吸附水中Hg(Ⅱ)   总被引:11,自引:0,他引:11  
利用谷壳灰吸附水中汞离子。实验表明:静态吸附率随汞离子的初始浓度升高而降低,静态吸附容量随粒径减小而增大,其动活性约为105.3mg/g。  相似文献   

3.
高分子絮凝剂用于染色废水处理研究   总被引:26,自引:0,他引:26  
本课题以染色废水中占比例最大的印染废水研究对象,用合成的含有多种活性基团的聚两性电解质PAN-DCD和PAN-DCD-HYA以及阳离子聚电解质FA-2^#对印染厂废水进行脱色和去除COD效果评价,试验结果证明,这几种高分子絮凝剂对印染废水都优良的脱色性能,并与常用的无机絮凝剂作了比较。  相似文献   

4.
研究了新型吸附剂-活性矸的吸附行为,结果表明,活性矸等温吸附符合Freunich吸附等温方程式,吸附动力学可用Bangham吸附速率方程描述,并且可利用Body公式确定活性矸-碘吸附体系的液相有效扩散系统(Di)。  相似文献   

5.
电厂燃煤过程中汞的迁移转化及控制技术研究   总被引:7,自引:0,他引:7  
讨论了近年来国内外电厂煤燃烧过程中汞的形态分布以及迁移转化规律研究的最新成果,并在此基础上评价了现有电站污染控制系统的脱汞性能,考虑到汞的排放控制,提出了对现有设备的可能优化措施。在分析中,注意到汞的易挥发性,认为汞排放控制应该充分考虑烟气中汞形态的迁移转化。由于氧化态汞在汞控制中有着重要作用,其研究将是控制电厂汞排放的关键。先进的汞排放控制技术的开发应以增强汞的氧化态为优先发展方向。  相似文献   

6.
银负载对活性炭纤维汞吸附性能的影响   总被引:1,自引:0,他引:1  
银氨溶液浸渍活性炭纤维制得载银量14.07%的载银活性炭纤维.以筒状吸附体吸附气态Hg0的方式研究活性炭纤维银载前后的汞吸附性能,结果表明,载银后活性炭纤维汞吸附性能明显提高.实验还发现:随吸附温度升高,活性炭纤维的汞吸附效率随先增加后降低,而载银活性炭纤维的汞吸附效率随吸附温度升高而一直降低;延长停留时间和添加H2O(g)对两者汞吸附均有利.采用片状吸附体对2种吸附剂的汞饱和吸附量进行了测定,实验得出:70℃下活性炭纤维汞饱和吸附量为29.4 mg/g,载银活性炭纤维汞饱和吸附量为192.3 mg/g,即活性炭纤维载银后汞饱和吸附量提高到原来的6.54倍.扫描电镜分析发现:活性炭纤维上物理吸附汞占绝大多数,化学吸附汞很少;负载银后汞只吸附在活性炭纤维的含银活性点上,银粒子与汞结合生成银汞齐后形状趋于规则,且主要分布于活性炭纤维微晶的晶棱交界处.  相似文献   

7.
改性活性炭纤维吸附脱除气态汞   总被引:2,自引:1,他引:1  
采用浸渍法对活性碳纤维(ACF)改性,所制得的吸附剂在固定床上进行汞吸附评价。Boehm滴定表明,浓HNO3和H2O2改性后的ACF表面含氧官能团有所增加,含氧官能团的增加有利于汞的吸附。XRF结果表明,ACF经硝酸银浸渍后,银离子被还原成单质银,使其对汞的吸附性能得到改变,并随着硝酸银浓度的增大而增大。ACF经活性MnO2和KMnO4浸渍后,吸附效果均有所提高,穿透时间大大加长,穿透吸附量也大大提高,两者均可达到170μg/g。  相似文献   

8.
活性焦对水中汞的吸附性能   总被引:2,自引:0,他引:2  
采用活性焦作为吸附剂,通过静态吸附实验,研究了活性焦对水中汞的吸附特性,并初步探讨了其吸附机理。活性焦对汞的吸附可用拟二级动力学模型描述;在pH为5时能达到对Hg(Ⅱ)的最大吸附容量,在不同离子强度下均能保证对Hg(Ⅱ)有较高的去除率;据Langmuir吸附等温线模型计算出活性焦对Hg(Ⅱ)的饱和吸附容量可达412.1 mg/g。结合红外光谱、Zeta电位测试的结果,可推测活性焦对Hg的吸附过程是物理吸附和化学吸附综合作用的结果。活性焦是一种成本低、效果显著且稳定的吸附剂,有望在含汞废水处理中发挥重要作用。  相似文献   

9.
以蛭石、丝光沸石、膨润土及经改性后各物质为吸附剂,N2气氛下,在固定床实验台上进行了对烟气中单质汞脱除的实验研究,主要考察了温度的改变对改性矿物吸附剂脱除气态汞的影响。研究结果显示,膨润土、蛭石对汞的吸附基本不受温度的影响;未改性的吸附剂对汞的吸附能力均比较差;温度的提高有利于改性吸附剂对单质汞的脱除,说明改性后的吸附剂的脱汞过程以化学吸附为主;真正起作用的活性组分CeO2占据了丝光沸石的大部分表面积和空隙;丝光沸石经CuO改性前后吸附能力几乎未发生变化。  相似文献   

10.
氧化汞和氧化亚汞生产过程中造成严重的汞污染,由于气型污染,被土壤吸附,蓄积形成147m污染半径,汞污染前后调查研究对比,土壤、蔬菜、鱼、地面水中汞残留超过正常范围。对汞污染后危害特点进行讨论,提出相应的建议。  相似文献   

11.
Biosensors for detection of mercury in contaminated soils   总被引:1,自引:0,他引:1  
Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities.  相似文献   

12.
Wang L  Jiang X  Yan D  Wu J  Bian Y  Wang F 《Chemosphere》2007,66(3):391-396
The effect of chlorpyrifos added in irrigation water to a red soil from Central South China on the growth of wheat and oilseed rape seedlings, together with its uptake, was studied in a pot experiment. Addition of chlorpyrifos (1-10 microg g-1) in a single irrigation with distilled water resulted in absorption of chlorpyrifos by wheat (0.257-4.50 microg g-1) and also oilseed rape seedlings (0.249-2.02 microg g-1) during 20 d of plant growth. An initial concentration of chlorpyrifos in soil that is equivalent to or below 10 microg g-1 did not significantly influence the growth of wheat seedlings. Similarly, an initial concentration equivalent to or below 5 microg g-1 did not significantly influence the growth of oilseed rape seedlings. The degradation rate of chlorpyrifos was 1.4-4.2 times larger in oilseed rape rhizosphere soil than in unvegetated soil. The numbers of bacteria and fungi in oilseed rape rhizosphere soil were 3.18 times and 1.84 times larger, respectively, than those in unvegetated soil. This helps to explain the difference in degradation rates obtained.  相似文献   

13.
Spinach extracts contain powerful natural antioxidants and have been used to improve the response of animal cells to various stress factors. The aim of the present study was to assess the effects of a methanolic extract of spinach (SE) used at two concentrations (21.7 and 217 ppm) on the growth, certain enzymes and antioxidant systems in wheat seedlings under lead stress. When wheat seedlings were grown for 7 days in a solution containing Pb(NO3)2 (3 mM), germination and growth were impaired, while signs of oxidative stress were observed. SE (217 ppm) pretreatment was able to protect seedlings from Pb toxicity by both reducing Pb uptake and Pb-induced oxidative stress. As a consequence, almost normal germination, elongation, biomass and α-amylase activity were restored by SE (217 ppm) pretreatment of wheat seedlings, in spite of the presence of Pb. Our results support the protective role and the antioxidant effect of SE against Pb. These results show an amazing similarity to the effects of SE in animals, which suggests that providing “nutraceuticals” to plants could improve their “health” status.  相似文献   

14.
Pang X  Wang DH  Xing XY  Peng A  Zhang FS  Li CJ 《Chemosphere》2002,47(10):1033-1039
In order to improve the plant ability to resist lead stress, effect of 0.05 mg/l La(NO3)3 on the activities of catalase (CAT), superoxide dismutase (SOD), the level of malondialdehyde (MDA) in wheat seedlings under lead stress was studied. The effect of La3+ on plant growth, chlorophyll content in wheat seedlings after adding 0, 50, 100 mg/l Pb(NO3)3 to the nutrient solution for 12 days was observed. The plants were grown in nutrient solution in a strictly controlled climate growth room. Effects of La3+ (with La treatment) compared with check groups was evidently observed. The activities of SOD and CAT in root were enhanced 0.45–1.69 times and 33.20–77.77% respectively and MDA content was reduced 11.05–27.49% in root after treatments from the second day till the end of the experiment. The activities of SOD and CAT was found to be increased slightly (P<0.05) and MDA content decreased in shoot and root of wheat seedlings by La3+ under lead stress within five days after treatments compared with Pb1 and Pb2 groups. It was assumed that antioxidant enzymes was found to be increased by La(NO3)3, the antioxidant potential of the wheat seedlings to resist lead stress enhanced. It is suggested that La3+ could be used to resist lead stress at the beginning under stress while the stress was not so serious.  相似文献   

15.
Liu X  Zhang S  Shan X  Zhu YG 《Chemosphere》2005,61(2):293-301
Effects of different concentrations of arsenite and arsenate (0-16 mg/l) on seed germination, relative root length and shoot height, arsenic accumulation in young seedlings, alpha-amylase, beta-amylase and total amylolytic activity in wheat were investigated in order to elucidate the toxicity of arsenic in the early developmental stage. Germination percentages of different wheat varieties had different responses to arsenic species and decreased significantly with increasing arsenic concentrations except Duokang 1. Relative root length (RRL) and relative shoot height (RSH) of wheat seedlings decreased with increasing concentrations of arsenite and arsenate. The relative root lengths were correlated with the relative shoot heights for arsenite (r2 = 0.79) and arsenate (r2 = 0.77). Arsenic uptake by seedlings increased with the increasing concentrations of arsenite or arsenate and followed the Michaelis-Menten kinetics function. The average total amylolytic activity and beta-amylase activity had no significant difference comparable to that of controls at the concentration 2 mg/l arsenite or arsenate, but decreased apparently when the concentration was higher than 2 mg/l. Whereas the alpha-amylase activity decreased with increasing concentrations of arsenite or arsenate over the whole concentration range. Arsenite decreased all the endpoints more remarkably than arsenate. In comparison, shoot height and root length were more sensitive to arsenic than other endpoints and might be used as indicators for arsenic toxicity.  相似文献   

16.
Field studies were conducted to investigate arsenic (As), copper (Cu), and zinc (Zn) contamination in agricultural soils and wheat crops at two areas in Huaibei, China. Area A is in the proximity of Shuoli coal mine. In area B, three coal mines and a coal cleaning plant were distributed. The potential health risk of As, Cu, and Zn exposure to the local inhabitants through consumption of wheat grains was also estimated. The results showed that significantly higher (p?<?0.05) concentrations of As, Cu, and Zn were found in soils collected from area B than in those from area A. Arsenic concentrations in wheat sampled from area A were negatively correlated with the distance from the coal mine (p?<?0.001). Concentrations of Cu and Zn in wheat seedlings and grains collected from area B were significantly higher (p?<?0.05) than in those collected from area A, with the exception of Zn in wheat seedlings. Concentrations of Cu and Zn in most wheat grain samples were above the permissible limits of Cu and Zn in edible plants set by the Food and Agriculture Organization/World Health Organization. The hazard index of aggregate risk through consumption of wheat grains was 2.3–2.4 for rural inhabitants and 1.4–1.5 for urban inhabitants. The average intake of inorganic As for rural inhabitants in Huaibei was above 10 μg day?1. These findings indicated that the inhabitants around the coal mine are experiencing a significant potential health risk due to the consumption of locally grown wheat.  相似文献   

17.
Major factors influencing the root-induced copper fractionation changes within the rhizosphere of maize, wheat, pea, and soybean seedlings were evaluated using a contaminated calcareous soil. The effects of acidification, alkalization, and introduction of root exudates were investigated by addition of acid, alkaline and root exudates from solution cultures, prior to incubation and copper fractionation. Raw and sterilized soils were compared for changes of copper fractionation in the rhizosphere using rhizoboxes with maize, wheat, pea and soybean seedlings. The results indicated that the general trend in considerable changes was similar among the plant species studied. The rhizosphere experienced a depletion of carbonate associated and organic bound copper along with an accumulation of exchangeable and Fe-Mn oxide bound copper. The resulting significant influence of root exudates on copper fractionation appears to have been produced through complexation rather than acidification or alkalization. The increase in exchangeable copper in rhizosphere was strengthened by microorganisms.  相似文献   

18.
柠檬酸对小麦吸收铜的影响   总被引:1,自引:0,他引:1  
通过土培和水培试验,研究了柠檬酸对小麦吸收铜的影响.土培结果表明:柠檬酸对土壤中的铜有一定的活化能力,使土壤中生物有效性的铜含量提高,从而提高了小麦中铜的含量,并且表明茎叶中的元素铜含量一般比根中的铜含量要低.水培结果表明:柠檬酸对小麦积累铜存在"高抑低促"的生物效应.  相似文献   

19.
Jing An  Qixing Zhou  Yuebing Sun  Zhiqiang Xu   《Chemosphere》2009,76(10):1428-1434
Biochemical responses of wheat (Triticum aestivum L.) seedlings stressed by two typical personal care products (PCPs) – triclosan (TCS) and galaxolide (HHCB) were experimentally investigated to assess their ecological risks. The results showed that wheat shoot and root elongation was significantly inhibited by 50–250 mg L−1 TCS and HHCB. Wheat roots were sensitive to TCS, while shoots were sensitive to HHCB. The median effect concentration (EC50) of TCS and HHCB based on the inhibition of their sensitive sites were 147.8 and 143.4 mg L−1, respectively. Moreover, the damage of wheat seedlings treated by low concentration of TCS and HHCB during a long period cannot be neglected. After a 21-d exposure, 0.2–3.0 mg L−1 TCS and HHCB treatment caused the damage to the accumulation of chlorophyll (CHL), the synthesis of soluble protein (SP), and the activity of peroxidase (POD) and superoxide dismutases (SOD) in different degree. However, different changing trends of these physiological indexes treated by different PCPs were observed after 7-d to 14-d exposures, especially the activity of POD and SOD. The activity of POD and SOD in wheat leaves and roots decreased with an increase in the concentration of TCS and the exposure time. However, the enzyme activities in wheat leaves treated by 0.2–3.0 mg L−1 HHCB increased after a 14-d exposure, and with the prolongation of exposure time, the enzyme activities significantly decreased. The variations in these physiological indexes of wheat could be considered as good biomarkers of serious stress by TCS and HHCB in the environment.  相似文献   

20.
Abstract

Wheat (Triticum aestivum L.) seedlings grown from seeds produced in “organic”; (non‐chemical) and “conventional”; cropping systems are characterized by a) similar rates of root and shoot growth, b) equal sensitivity to phytotoxicity by the herbicide glyphosate, and c) equivalent basal activity of the enzyme glutathione S‐transferase (both in the roots and in the shoots). In addition, treatment of these seedlings with glyphosate leads to significantly higher contents of this enzyme both in the shoots and in the roots. However, time‐course and dose‐response investigations indicate significant differences in the induction pattern of glutathione S‐transferase: the response of “conventional”; wheat seedlings takes place earlier and with higher efficiency, than that of the “organic”; ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号