首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the photocatalytic activity of Ti-montmorillonite. The highest activity was found for a Ti/bentonite ratio of 10 mmol/g, prepared using HCl and calcined by microwaves. This mixture is less active than TiO2 P-25 for 4-chlorophenol removal in water, but more active for methanol removal in air.  相似文献   

2.
This work describes the environmentally friendly technology for oxidation of ammonia (NH3) to form nitrogen at temperatures range from 423K to 673K by selective catalytic oxidation (SCO) over a nanosized Pt-Rh/γ-Al2O3 catalyst prepared by the incipient wetness impregnation method of hexachloroplatinic acid (H2PtCl6) and rhodium (III) nitrate (Rh(NO3)3) with γ-Al2O3 in a tubular fixed-bed flow quartz reactor (TFBR). The characterization of catalysts were thoroughly measured using transmission electron microscopy (TEM), threedimensional excitation-emission fluorescent matrix (EEFM) spectroscopy, UV-Vis absorption, dynamic lightscattering (DLS), zeta potential meter, and cyclic voltammetry (CV). The results demonstrated that at a temperature of 673K and an oxygen content of 4%, approximately 99% of the NH3 was removed by catalytic oxidation over the nanosized Pt-Rh/γ-Al2O3 catalyst. N2 was the main product in NH3-SCO process. Further, it reveals that the oxidation of NH3 was proceeds by the over-oxidation of NH3 into NO, which was conversely reacted with the NH3 to yield N2. Therefore, the application of nanosized Pt-Rh/γ-Al2O3 catalyst can significantly enhance the catalytic activity toward NH3 oxidation. One fluorescent peak for fresh catalyst was different with that of exhausted catalyst. It indicates that EEFM spectroscopy was proven to be an appropriate and effective method to characterize the Pt clusters in intrinsic emission from nanosized Pt-Rh/γ-Al2O3 catalyst. Results obtained from the CV may explain the significant catalytic activity of the catalysts.  相似文献   

3.
The TiO2/SiO2 composite was prepared by means of the SiO2-particle-entrapment method. The FTIR data showed the presence of Si–O–Ti stretching vibration band at 970 cm−1 in the TiO2/SiO2 composite, suggesting a reaction between TiO2 and silica on the TiO2 particle surface during the silicagel formation around the TiO2 particles. The photocatalytic efficiency of TiO2 immobilized in silicagel was compared with that of the conventional TiO2 Degussa P25 catalyst. For this purpose, the degradation of indigo carmin (IC) dye was used as model molecule in the tests. The effect of operational parameters such as catalyst loading and dye concentration on the photocatalytic degradation of the model dye was investigated. The rate of degradation increased with increasing catalyst loading, and when the concentration of the dye decreases.  相似文献   

4.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

5.
Bisphenol A is an endocrine disruptor. Complete mineralization of bisphenol A is therefore a primary environmental issue. Here, the combination of ozonation and photocatalysis by TiO2 is proposed for the degradation and final mineralization of bisphenol A. TiO2 films deposited onto two sides of an Al lamina show good stability and high surface roughness. We used a specific experimental setup employing two facing ultraviolet lamps and TiO2 layers, together with an ozone flux. High-performance liquid chromatography–mass spectrometry determinations on bisphenol A solutions sampled at different reaction times and Fourier Transform Infrared analyses of the oxide at the end of the reaction were performed to study the reaction intermediates and the overall degradation mechanism. Our results show that pollutant mineralization achieved with the combined method is far higher, of 55% in the case of 0.3 mM bisphenol A, than those obtained by individual treatments such as photolysis (<3%), ozonation (6%), photocatalysis (6%), and by other combined processes: photolytic ozonation (13%) and catalytic ozonation (15%). This finding is explained by the occurrence of highly synergistic effects.  相似文献   

6.
ZnS-loaded TiO2 (ZnS–TiO2) was synthesized by a sol–gel method. The catalyst was characterized by using different techniques (XRD, HR-SEM, EDS, DRS, PL, XPS, and BET methods). The photocatalytic activity of ZnS–TiO2 was investigated for the degradation of Sunset Yellow FCF (SY) dye in an aqueous solution using ultraviolet light. ZnS–TiO2 is found to be more efficient than prepared TiO2, TiO2–P25, TiO2 (Merck), and ZnS at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration, and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by chemical oxygen demand measurements. The catalyst is found to be reusable.  相似文献   

7.
Gaseous NO was photocatalytically reduced at room temperature by photo-assisted selective catalytic reduction (photo-SCR) with ammonia over TiO2 in this study. NO reduction efficiency and N2 selectivity were determined from gases composition at the outlet stream of photoreactor. Effect of operating conditions, e.g. light intensity and inlet concentrations of ammonia and oxygen, on the NO reduction efficiency and N2 selectivity were discussed to determine the feasible operating condition for photocatalytic reduction of NO. Experimental results showed that selective catalytic reduction of NO with ammonia over TiO2 in the presence of oxygen was a spontaneous reaction in dark. The photoirradiation on the TiO2 surface caused remarkable photocatalytic reduction of NO to form N2, NO2, and N2O under 254 nm UV illuminations, while almost 90% of N2 selectivity was achieved in this study. The ammonia and oxygen molecules played the roles of reductant and oxidant for NO reduction and active sites regeneration, respectively. The reduction of NO was found to be increased with the increase of inlet ammonia and oxygen concentrations until specific concentrations because of the limited active sites on the surface of TiO2. The kinetic model proposed in this study can be used to reasonably describe the reaction mechanism of photo-SCR.  相似文献   

8.

Photocatalytic membranes reactors have become one of the most efficient technologies to treat polluted waters. However, a major drawback is the unilateral irradiation of the membrane, where only one side of the membrane is exploited. To overcome this issue, we developed a reactor where the membrane can be irradiated on both sides. Polyacrylonitrile membranes containing different amounts of TiO2 nanoparticles up to 60% were first prepared by electrospinning. These membranes were used in a 3D-printed crossflow photocatalytic membrane reactor for the degradation of methylene blue under different combinations of lights. The use of both sides of the photocatalytic membrane significantly enhanced the photocatalytic activity for the decolorization of methylene blue in water. The prepared membranes showed the best decolorization rate for a loading of 60% of TiO2 and the use of dual ultraviolet lights, where the methylene blue solution was completely discolored after 90 min. This is the first report of a such system configuration, and this new irradiation concept is promising for photocatalytic membrane reactions and water cleaning.

  相似文献   

9.
Air pollution by volatile organic compounds is a major health issue due to increasing industrialization and urbanization, notably in the developing countries. Cleaning organic pollutants by catalytic combustion is a potential solution, but actual methods require relatively high temperatures, thus increasing remediation costs. There is therefore a need for methods that operate at mild temperatures. Here we prepared a novel catalyst made of Pd nanoparticles entrapped in TiO2 nanotubes by vacuum-assisted impregnation. Then, we tested this catalyst for butane combustion. The catalyst was characterized by N2 adsorption–desorption isotherms, transmission electronic microscopy, energy-dispersive X-ray analysis coupled with a scanning transmission electron microscope, X-ray photoelectron spectroscopy and temperature programmed oxidation. Results show a complete combustion of butane at 130 °C, which is about 20 °C lower than temperatures required by actual catalysts made of Pd nanoparticles deposited on the exterior surface of TiO2 nanotubes. Structure characterization suggests that this higher performance at lower temperature is explained by the confinement of TiO2 nanotubes. Such a confinement could hinder the metal sintering and, in turn, facilitate the formation of PdO during oxidation on the entrapped Pd nanoparticles.  相似文献   

10.
We have discovered that HNO3 and related species are released from the TiO2 surface into air in the TiO2 photocatalytic oxidation of NO2 (1 ppm) under continuous UV light illumination (1 mW cm−2) by dehumidifying the outlet gas of the reaction and analyzing the recovered condensate liquid by ion chromatography. The origin of the HNO3 recovered in the dehumidifier could not be explained by a simple desorption of HNO3 overproduced on the TiO2 surface. The produced HNO3 must be activated on the TiO2 surface and causing the unidentified reaction.  相似文献   

11.
The occurrence of chlorinated pesticides in wellwaters is a major problem of public health in Ivory Coast and other African countries. Here, we studied the photocatalytic degradation of the pesticide diuron in aqueous solution in presence of two commercial TiO2 catalysts, P25 and PC500. The capacity of diuron adsorption at the TiO2 surface is lower for both photocatalysts. The efficiency of photocatalytic degradation of diuron, it is higher using P25 Degussa than PC500 Millenium TiO2 catalyst.  相似文献   

12.
We report a facile approach for preparing mesoporous boron-doped TiO2 materials by combining the sol?Cgel process with the dehydration of glucose. Specifically a high surface carbon material was formed by dehydration of glucose, then used as template. This material and the TiO2 dry gel were calcinated to produce porous TiO2. The as-synthesized boron-doped TiO2 was in pure anatase crystallite phase with high surface area. X-ray photoelectron spectroscopy (XPS) results showed that boron was incorporated into the anatase TiO2 lattice to form TiO2?xBx. The absorption spectra of TiO2?xBx extended into the visible region to 460?nm. The TiO2?xBx exhibited much higher photocatalytic activity on phenol degradation than pure TiO2. It showed that the phenol degradation by-products of TiO2?xBx were different from that of pure TiO2. Mechanism of the photocatalytic degradation of phenol at TiO2?xBx was also proposed.  相似文献   

13.
In this work, Er3+:YAlO3/TiO2 composite was synthesized by a ultrasonic dispersion and liquid boil method. The Er3+:YAlO3/TiO2 composite and pure TiO2 powder were characterized by XRD. The degradation of different organic dyes was used to evaluate the photocatalytic activity of the Er3+:YAlO3/TiO2 composite. It is found that the photocatalytic activity of Er3+:YAlO3/TiO2 composite is much higher than that for the similar system with only TiO2. Moreover, this Er3+:YAlO3/TiO2 composite provides a new way to take advantage of TiO2 in sewage treatment aspects using solar light.  相似文献   

14.
The photocatalytic formation of hydrogen peroxide over ZnO and TiO2thin films has been investigated in aqueous phase in the presence of molecular oxygen as an electron acceptor. These films are highly porous and showed enhanced catalytic activity in the photochemical formation of hydrogen peroxide. The amount of H2O2formed during 2 hour light illumination is 4–6 μM and the rates of formation of hydrogen peroxide of both the films are almost comparable. The yield of hydrogen peroxide increases with the increase in irradiation time and a trend of steady state concentration of H2O2is observed in the case of TiO2thin film. Photodissolution of ZnO particles is observed in some extent during the process of prolonged UV light illumination.  相似文献   

15.
Complete oxidation of methane on Co3O4-SnO2 catalysts   总被引:1,自引:0,他引:1  
Co3O4-SnO2 hybrid oxides were prepared by the coprecipitation method and were used to oxidate methane (CH4) in presence of oxygen. The Co3O4-SnO2 with a molar ratio of Co/(Co + Sn) at 0.75 exhibited the highest catalytic activity among all the Co3O4-SnO2 hybrid oxides. Experimental results showed that the catalysts were considerably stable in the CH4 combustion reaction, and were verified by X-ray photoelectron spectra (XPS). It was found that Co3O4 was the active species, and SnO2 acted as a support or a promoting component in the Co3O4-SnO2 hybrid oxides. The surface area was not a major factor that affected catalytic activity. The hydrogen temperatureprogrammed reduction (H2-TPR) results demonstrated that the interaction between cobalt and tin oxides accelerated the mobility of oxygen species of Co3O4-SnO2, leading to higher catalytic activity.  相似文献   

16.

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70–75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

  相似文献   

17.
Fe3O4 was supported on mesoporous Al2O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe3O4/Al2O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and para-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe3O4 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of Al2O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe3O4/Al2O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.  相似文献   

18.
The synthesis of silver doped nano-particulate titanium dioxide (Ag/TiO2) using a microemulsion method and an investigation of its photocatalytic activity for the degradation of Acid Red 27 in distilled water under UV-irradiation is reported. The prepared Ag/TiO2 is characterized using transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The size of the Ag nanoparticles is around 5–15?nm, with almost uniform distribution on the TiO2 particles. The efficiency of the photocatalytic process is evaluated to establish the optimum conditions, found to be at 2?wt% of Ag loading on TiO2, catalyst dosage of 400?mg?L?1, and calcination temperature of 300°C. Complete decolorization of the dye solution on Ag/TiO2 was observed in 20?min of UV irradiation in the optimum conditions.  相似文献   

19.
以Pd-Cu/TiO2为催化剂,采用催化加氢技术进行脱氮研究.结果表明:TiO2载体的特性对催化活性及N2选择性有显著影响,与773K和973K温度下焙烧得到的载体相比,以573K温度下焙烧得到的TiO2为载体制备的Pd(5wt%)-Cu(1.25wt%)/TiO2催化剂可显著提高催化效率及N2选择性.  相似文献   

20.
In rearing experiments with herring eggs (temperature=14.0°±0.1°C; salinity=15‰), oxygen consumption under normal conditions and after addition of 2,4-DNP (concentration=0.1 mM/l; pH=8.1) was measured over the period of embryonic development by means of the Wabburg-technique. Additionally, the concentration of low molecular sugars, polysaccharides, free amino-acids, and adenosintriphosphate (ATP) was determined. The oxygen consumption increases during embryonic development; this increase is not linear. Periods of high intensity of oxygen consumption are followed by others with only slight increase. Immediately before hatching, the respiration curve distincly declines (Fig. 1). Under the influence of 2,4-DNP (dinitrophenol), the embryos increase their respiration intensity after a short period of incubation. The maximum rise in percentage over the normal values reaches up to 400% at the beginning of gastrulation, falls to 50% even before the locking of the blastopore, and decreases slightly to about 30% until hatching. The immense decline in the percentage increase in respiration following the addition of 2,4-DNP at the end of the first day of development is caused by the rapid increase in normal respiration. After poisoning with DNP at different stages of development, the uncoupled respiration curves are normally almost equal. This holds both for the temporal position of the respiration maxima (about 12 to 24 h after poisoning), and for the absolute amounts of the increased respiration over the normal values (5 to 7 μl/h/100 embryos). Excluded from these regularly repeated findings are two stages of development: (1) the stage of epiboly after exceeding the yolk equator until shortly before locking of the blastopore (26 to 32 h after fertilization at 14°C); (2) the period at the end of the 4th day of development when the eyes become pigmented (100 to 120 h after fertilization). These two stages are characterized by the fact that, at the moment of poisoning, the normal respiration shows retarded activity. On the other hand, these two stages are well able to undergo periods of development in which long-living embryonic deformations can occur after uncoupling of respiration with 2,4-DNP. The content in low molecular sugars and polysaccharides decreases slightly in the course of embryonic development and, following the addition of 2,4-DNP, decreases considerably during the first 24 h. After 48 h, accelerated decomposition of carbohydrates continues. Under the influence of 2,4-DNP, the embryos metabolize more carbohydrates in 1 day than during the whole normal development period. The changeover of the metabolism to increased decomposition of carbohydrates can be explained as a dislocation of the energetic sources from the respiration chain to glycolytic phosphorylation. In accordance with these facts, the concentration of free amino-acids, almost equal during normal embryonic development, remains unchanged under the influence of 2,4-DNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号