首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The epiphytic moss Polytrichum juniperinum and the tree bark of Azardirachta indica were used to determine the atmospheric Cd, Cu, Pb, Mn, Fe, Ni and Zn levels in the North-East region of Nigeria. A good correlation exists between levels in the moss and the tree barks. The Pb, Zn and Fe levels in both sample types were higher than other metals in most sites. There was no significant difference in the levels of Cd, Cu, Ni and Mn recorded for inhabited and forest sites. The area derives its atmospheric metal contamination from vehicular, urban, industrial and agricultural sources.  相似文献   

2.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

3.
The technique of diffusion gradient in thin films (DGT) for assessing bioavailable metals has not been tested under field conditions. We assessed the relationships of DGT- and cation exchange resin-membrane-measured concentrations of Cd, Cu, Pb, and Zn with plant uptake of the metals under greenhouse and field conditions. In the greenhouse, the effective concentrations of Cu, Pb, and Zn by DGT correlated significantly with uptake by sorghum (Sorghum bicolor), but cation exchange resin-membrane-measured concentrations of Cd, Pb, and Zn did not correlate with sorghum uptake. In the field, the DGT-measured concentrations of Cd, Pb, and Zn were not linearly related to uptake Cd, Pb, and Zn by lettuce (Lactuca sativa) except for Cu uptake (r = 0.87, p < 0.05). Similarly, it was only the resin-membrane-extractable Pb that correlated with Pb uptake by lettuce (r = 0.77; p < 0.05). However, fitting non-linear regression models improved the plant metal uptake predictions by DGT-measured bioavailable Cd, Cu, Pb, and Zn under field conditions. In conclusion, the DGT technique was fairly predictive of bioavailability in the greenhouse, but not in the field.  相似文献   

4.
The study was conducted between January and December 2002. The main objective of this study was evaluation of effects of refrigerated storage duration on redistribution of three trace elements (Cd, Cu and Zn) in tissues (exoskeleton, abdominal muscle and hepatopancreas) of a shrimp species (Penaeus semisulcatus). Moreover, the possible roles of metallothionein (a kind of metalloprotein) in redistribution of the elements in tissues of the selected species were assessed. The specimens were sampled from northwestern part of the Persian Gulf. The concentrations of metals in the tissues were measured using Inductively Coupled Plasma-Optical Emission Spectrophotometer (ICP-OES). Metallothionein levels were determined by Differential Pulse Polarography (DPP) method. pH of the muscle samples was also measured in different stages. Different statistical methods were used for interpretation of the results. There were no size-dependent differences in metal contents of the species. The results were compared with specimens from other areas of the world and existing guidelines and limits. Concentrations of the metals in the muscle (0.103, 3.418 and 8.977 µg g–1 wet weight in the case of Cd, Cu and Zn, respectively) samples were below the most guidelines for human consumption. The results were in general agreement with those obtained by some other researchers. There were highly significant differences between sexes in Zn and Cu contents. Levels of Zn in females were significantly higher than males. The reverse case observed for Cu. The highest mean Cu and Zn concentrations (15.939 and 43.394 µg g–1 wet weight, respectively) were found in hepatopancreas samples, but the highest level of Cd (0.790 µg g–1 wet weight) was observed in exoskeleton. There were significant differences between the fresh and refrigerated samples from accumulation of Cd and Zn in tissues point of view, which can be attributed to the metal binding properties of metallothioneins as well as their degradation during the storage.  相似文献   

5.
Experiments were carried oud in order to obtain information on the uptake characteristics of metals in the algal and fungus components of lichens. The uptake of 115Cd, 65Zn, 64Cu, 140La, 187W, 75Se, and 76As in the alga Scenedesmus pannonicus, subsp. Berlin and the fungus Aureobasidium pullulans was determined during 11 days of incubation at pH 5 and pH 7. The results indicate different acid-sensitivity of the alga and the fungus. The metal uptake in the alga was generally faster at pH 7, in the fungus uptake rates were higher at pH 5. In both the alga and the fungus for different pH-values hardly any differences in ultimate metal levels could be observed for Cd2+, Zn2+, La3+, and SeO inf3 sup2- . In algae, the ultimate levels of the accumulated anionic forms of W and As appeared to be independent of pH; in the fungi the ultimate W and As levels were higher at pH 5. No differences could be observed in the Zn2+ accumulation capacities of both organisms. The As accumulation capacity of the alga was estimated to be about 10 times the As uptake capacity of the fungus. The results indicate the component-specific uptake and accumulatiom behaviour in intact lichens.  相似文献   

6.
Experiments were carried out in order to obtain information on the uptake characteristics of metals in the algal and fungal components of lichens. The uptake of 115Cd, 65Zn, 64Cu, 140La, 187W and 76As in the alga Scenedesmus pannonicus, subsp. Berlin and the fungus Aureobasidium pullulans was determined at pH 7 and 5 respectively, in 4 h experiments varying with respect to temperature and Ca2+ solution concentrations. Furthermore, the effects of pre-rinsing the cell suspensions on metal uptake were investigated.Pre-rinsing resulted in decreased uptake of W and As by algae and in increased uptake of all elements measured by fungi, which may be attributed to combined effects of starvation and changing densities.For algae, the uptake rates of As, W, Zn and Cd were markedly increased at the highest temperature employed. For Cu and La hardly any effects of temperature were observed, indicating the absence of metabolically controlled uptake. For fungi, but for As no relation of uptake with temperature could be determined.The presence of Ca2+ ions in the solution applied hardly affected the uptake of As but resulted in increased uptake of W by both the algae and the fungi. The effects of Ca2+ on the uptake of Cu and La were relatively small, probably due to specific binding sites in the cell walls for Cu and to the supercalcium status of the La-ion.The presence of Ca2+ caused decreased uptake of Cd2+ and Zn2+ by algae, but hardly affected the uptake of Zn2+ by fungi.The results indicate component-specific uptake and accumulation behaviour in intact lichens.  相似文献   

7.
The effects of several different treatments on subsequent uptake of several metal ions from solution by six strains of seaweed algae and a sea plant were investigated. Samples of Gracilaria conferta, Eisenia bicyclis, Ulva lactuca, Sargassum fluitans, Cladophora prolitera, Padina pavonica, and Zostera marina were treated with one or more of the following: 1 M HCl, 1 M HNO3, 0.1 M NaOH, 1 M NaOH, acetone, and 60°C water at times from 15 to 60 min and temperatures of 25 and 60°C. Results obtained demonstrate that a treatment time of 15 or 30 min is usually sufficient to produce maximum subsequent metal uptake. Temperature of treatment had little effect.The percentages of Pb, Cu, Zn, Cd, Cr, Mn, Ni, Co, TI, Hg, Au, and Ag subsequently removed from standard metal solutions at a pH of 2–6 by each treated biomass were compared with the percent removal by untreated biomass under the same conditions. All treatments increased the ability of the biomass types studied to bind metals relative to untreated biomass. In addition, pH binding dependence was altered to some extent with a greater degree of binding observed at low pHs by biomass treated with acid. For certain strains of seaweed algae, 0.1 M NaOH treatment produced subsequent uptake of Pb, Cu, Zn, and Cd at levels reaching 100% of initial metal available. Both acidic and basic treatment increased the uptake of Au, Ag, and Hg by four strains of seaweed to nearly 100%.  相似文献   

8.
A survey of atmospheric heavy metal deposition in the east and south Marmara region, Turkey was carried out in September 2004. For this purpose, moss samples (Hypnum cupressiforme) were collected in a systematic network of 125 sites. Concentrations of the elements (Al, B, Ba, Ca, Cd, Fe, Co, Cr, Cu, K, Li, Mn, Na, Ni, Pb, Sr, Mg, Ti, and Zn) in the moss were used as an indication of the level of air pollution in the region. Significant differences in heavy metal concentrations, especially for Pb, Cd, Cu, and Zn, were recorded in the moss samples collected around industrialized and heavily populated cities (Istanbul, Bursa, Band?rma, Kocaeli, Biga-?an) and in an abandoned lead-mining area (Bal?kesir-Balya). A map of the spatial distribution of each element in the region was plotted, and enrichment factors were calculated. VARIMAX principal component analysis was applied to the data obtained, and five different components were obtained. The results showed that Pb, Cu, Cd, and Zn derived from anthropogenic and industrial sources while other elements came mostly from natural sources.  相似文献   

9.
Previous studies have proposed that Pardosa astrigera L. Koch (Lycosidae) can be used as a biological indicator of heavy metal contamination in soil. In this study, we estimated the bioaccumulation levels and the bioconcentration factors (BCF) of four heavy metals (Cd, Cu, Pb, and Zn) in adult female P. astrigera collected from various field sites according to heavy metal content gradient and broods. The relationship between heavy metal content in the soil and that in spiders was different depending on the heavy metals and the broods. However, heavy metal content in P. astrigera increased with increasing heavy metal content in the soil. While the heavy metal content in the soil was in the order of Zn > Pb > Cu > Cd, its content in P. astrigera was in the order Zn > Cu > Cd > Pb. The BCF for Cd in both of the broods was distinctly higher than those of the other heavy metals evaluated. These results indicate that P. astrigera may be useful as a biological indicator of Cd soil contamination.  相似文献   

10.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   

11.
The biomonitoring properties of oak tree bark compared with the epiphytic moss Hypnum cupressiforme and the influence of the tree bark, as its growth substrate, on the content of heavy metals in moss were investigated. Samples of the epiphytic moss H. cupressiforme and oak tree bark (Quercus spp.) were collected in Eastern Romania at a total of 44 sampling sites. Parallel moss and bark samples were collected from the same sides of the trunk circumference. V, Cr, Ni, Cu, Zn, As, Mo, Cd, In, Tl, Sn, Pb, and Bi were determined by ICP-MS. Principal component analysis was used to identify possible sources of metals in bark and moss. Six factors explaining 87 % of the total variance in the data set were chosen. The main factors represent long-range atmospheric transport of elements (Zn, Cd, (Pb), Bi, (Mo), (Tl)), local emissions from industrial sources (As, Cr, Ni, V), road traffic (Pb, Zn) and agricultural activities (Cu, (Zn)). The element concentrations in moss and bark samples are of the same order of magnitude. For almost all the elements, higher concentrations were obtained in moss. Significant correlations between concentrations in moss and bark samples were obtained for 7 of the 13 elements: V, Ni, Cu, Zn, Cd, In, and Bi, all typical anthropogenic pollutants. The use of tree bark for monitoring purposes might be an alternative in areas where there is a scarcity of mosses.  相似文献   

12.
Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb?>?Cd?>?As?>?Zn?>?Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg?1 day?1 for Cu and 94.52 mg kg?1 day?1 for Zn, but that for adult oyster is 10.79 mg kg?1 day?1 for Cu and 137.24 mg kg?1 day?1 for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.  相似文献   

13.
Concentrations of Cd, Cr, Cu, Pb, and Zn were determined in algae samples collected from the Rabta Bay in the Mediterranean Sea, Algeria. The levels of heavy metals in the macroalgae, Ulva lactuca, Codium fragile (green algae), Jania rubens (red algae), and Dictyota dichotoma (brown algae) recorded high concentrations except for Cd. Moreover, Zn was the most predominant metal in the seaweeds. The obtained HM contents indicate that different species demonstrate various degree of metal accumulation and the obtained higher values in site 1 of the studied zone can be attributed to the discharge influence of two rivers (Mouttas and Larayeche Rivers), entering the Mediterranean Sea and local pollutant emissions. The abundance of heavy metal concentrations in the macroalgae samples was found in the order below: Zn > Cu > Pb > Cr > Cd from the studied zone. The highest amounts of heavy metals in algae samples were Cd, Cu, and Pb in brown algae, and Cr and Zn in green and brown algae from the studied zone (Rabta Bay).  相似文献   

14.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

15.
Sequential chemical extraction was used to study the operationally determined chemical forms of five heavy metals (Pb, Cu, Zn, Co and Ni) and their spatial distribution in the sediments. The binding behaviour of heavy metals associating with Fe–Mn oxides showed a good correlation towards Cu, Zn and Co, but moderate linear dependence with Ni and Pb. Among the five metals, correlation between Fe–Mn oxide bound Cu and Fe–Mn oxides (r = 0.95) is highest. The coefficient of determination (r 2) in organically bound heavy metals versus organic matter (OM) ranges from 0.772 to 0.952, which indicates a good linear dependence. The OM fraction in the sediments is more accessible to heavy metals and is the major ligand available for complexation. In particular, Zn and Cu are preferentially bound to OM. In general, Zn co-precipitation with carbonates is the dominant chemical form when Fe–Mn oxide and OM are less abundant. In this study, however, carbonates were less abundant, hence Zn bound to carbonates was less pronounced. Based on the results, even if the excessive binding sites are contained in the sediments, competition of various complexation reactions between sediment phases and heavy metals could dominate metal association.  相似文献   

16.
Bio-monitoring of some heavy metal levels (Cd, Pb, Zn, Cu) in whole edible soft parts of Mytilus galloprovincialis (L. 1758) was conducted in Turkish Aegean Sea coast during the period of September 2002–August 2003 seasonally. Moreover, some physico-chemical environmental parameters, also have been analysed in the same region. The values of some physico-chemical environmental parameters in coastal waters of Turkish Aegean Sea were changed between; 9.0–27.0 C for temperature, 31.93–40.45 psu for salinity, 7.35–8.48 for pH and 4.05–9.50 mg/l for dissolved oxygen. The levels of trace elements in whole edible soft parts including interstitial fluids of Mediterranean mussels M. galloprovincialis (L. 1758), sampled from 6 different regions of Turkish Aegean Sea coast have ranged between; 0.04–0.52 μg Cd/g wet weight, 0.49–1.72 μg Pb/g w.w., 0.95–1.85 Cu/g w.w., 16.11–37.15 μg Zn/g w.w. The highest values for all trace metals (Cd, Pb, Zn, Cu) were measured in inner part of Izmir Bay (station 3) and lowest in Sigacik and Gulluk Bay (station 5, 6). Generally heavy metal levels are lower than the results in soft mussel tissues reported from Mediterranean regions.  相似文献   

17.
Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.  相似文献   

18.
Many alluvial soils along navigable waterways are affected by disposal of dredged sediments or overbank sedimentation and contain metal concentrations that are elevated compared to baseline levels. Uptake patterns for metals and other elements by several volunteer Salix species growing on these sites were determined during a growing season in field plots and compared with the same species growing on soils with baseline contamination levels. For Cd and Zn, foliar concentrations were clearly higher on dredged sediment landfills. Uptake patterns differed significantly between species. A high uptake of Mn and low uptake of Cu, K and S in S. cinerea was attributed to wetland soil chemistry. Site effects on metal uptake were evaluated in more detail for Salix cinerea and S. alba growing on different sediment-derived sites under field conditions. Foliar Cd concentrations were higher in S. cinerea than in S. alba. This appeared to be a genetic feature not influenced by soil chemical properties, as it was observed both on clean sites and polluted sediment-derived sites. For S. cinerea, soil chemistry was reflected in foliar concentrations, while foliar Cd concentrations and bioavailability were found to be independent of the thickness of the polluted horizon. Dredged sediment landfills and freshwater tidal marshes with comparable Cd soil pollution had significantly different foliar Cd concentrations.  相似文献   

19.
The observation from previous surveys, that Urtica dioica plants that had grown in metal contaminated soil in the floodplains of the former Rhine estuary in different habitats, but at comparable total soil metal concentrations, showed significant differences in tissue metal concentrations, led to the hypothesis that variation in other environmental characteristics than soil composition and chemical speciation of metals between habitats is also important in determining uptake and translocation of metals in plants. A field survey indicated that differences in root Cd, Cu and Zn concentrations might partly be explained by variation in speciation of metals in different habitats. However, shoot concentrations showed a different pattern that did not relate to variation in soil metal concentrations. In a habitat experiment Urtica dioica plants were grown in artificially contaminated soil in pots that were placed in the four habitats (grassland, pure reed, mixed reed, osier bed) that were also included in the field survey. After seven weeks the plants showed significant differences in Cu and Zn concentrations in roots and aboveground plant parts and in distribution of the metals in the plants between habitats. It was concluded that variation between habitats in environmental characteristics other than soil composition can explain as much variation in plants as can variation in soil metal concentrations and/or speciation. The implications for assessment of soil metal contamination and uptake by plants are discussed.  相似文献   

20.
This study measured heavy metal and nutrient concentrations of two feather mosses during the periods of dry storage. Samples (Hylocomium splendens, Pleurozium schreberi) were collected in the nationwide moss surveys carried out on the permanent sample plots of the 8th Finnish National Forest Inventory in 1985–86, 1990, 1995 and 2000. A small amount of each moss sample was analyzed soon after collection, and the remainder was dried and stored at the Paljakka environmental specimen bank (ESB). The 108 stored samples from 27 plots were reanalyzed in 2008. Concentrations of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) and nutrients (Ca, K, Mg, P) were determined and compared for each survey year. Overall, Fe, Pb and Cr concentrations decreased, and Cu concentrations increased significantly during storage. The greatest decrease was observed in samples from plots where their initial concentrations were the highest. Changes in the concentrations of Cd, Ni and Zn were less pronounced. The loss of heavy metals is likely due to drying when cell membranes rupture and some of the surface material is lost. K, P and, to some extent, Mg concentrations increased during storage, whereas Ca did not change significantly. Nutrient increase is probably due to their movement from older to younger growths during the initial phase of drying. Ca is mostly bound to cell walls and is not easily released. Results emphasize the importance of establishing the intended use of a stored moss prior to sampling, in order to select and optimize an appropriate storage technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号